Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-x=c
Consider the first equation. Subtract x from both sides.
y=x+c
Subtract -x from both sides of the equation.
x^{2}+\left(x+c\right)^{2}=13
Substitute x+c for y in the other equation, x^{2}+y^{2}=13.
x^{2}+x^{2}+2cx+c^{2}=13
Square x+c.
2x^{2}+2cx+c^{2}=13
Add x^{2} to x^{2}.
2x^{2}+2cx+c^{2}-13=0
Subtract 13 from both sides of the equation.
x=\frac{-2c±\sqrt{\left(2c\right)^{2}-4\times 2\left(c^{2}-13\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 1\times 2c for b, and c^{2}-13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2c±\sqrt{4c^{2}-4\times 2\left(c^{2}-13\right)}}{2\times 2}
Square 1\times 1\times 2c.
x=\frac{-2c±\sqrt{4c^{2}-8\left(c^{2}-13\right)}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
x=\frac{-2c±\sqrt{4c^{2}+104-8c^{2}}}{2\times 2}
Multiply -8 times c^{2}-13.
x=\frac{-2c±\sqrt{104-4c^{2}}}{2\times 2}
Add 4c^{2} to -8c^{2}+104.
x=\frac{-2c±2\sqrt{26-c^{2}}}{2\times 2}
Take the square root of 104-4c^{2}.
x=\frac{-2c±2\sqrt{26-c^{2}}}{4}
Multiply 2 times 1+1\times 1^{2}.
x=\frac{2\sqrt{26-c^{2}}-2c}{4}
Now solve the equation x=\frac{-2c±2\sqrt{26-c^{2}}}{4} when ± is plus. Add -2c to 2\sqrt{26-c^{2}}.
x=\frac{\sqrt{26-c^{2}}-c}{2}
Divide -2c+2\sqrt{26-c^{2}} by 4.
x=\frac{-2\sqrt{26-c^{2}}-2c}{4}
Now solve the equation x=\frac{-2c±2\sqrt{26-c^{2}}}{4} when ± is minus. Subtract 2\sqrt{26-c^{2}} from -2c.
x=\frac{-\sqrt{26-c^{2}}-c}{2}
Divide -2c-2\sqrt{26-c^{2}} by 4.
y=\frac{\sqrt{26-c^{2}}-c}{2}+c
There are two solutions for x: \frac{-c+\sqrt{26-c^{2}}}{2} and \frac{-c-\sqrt{26-c^{2}}}{2}. Substitute \frac{-c+\sqrt{26-c^{2}}}{2} for x in the equation y=x+c to find the corresponding solution for y that satisfies both equations.
y=\frac{-\sqrt{26-c^{2}}-c}{2}+c
Now substitute \frac{-c-\sqrt{26-c^{2}}}{2} for x in the equation y=x+c and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{\sqrt{26-c^{2}}-c}{2}+c,x=\frac{\sqrt{26-c^{2}}-c}{2}\text{ or }y=\frac{-\sqrt{26-c^{2}}-c}{2}+c,x=\frac{-\sqrt{26-c^{2}}-c}{2}
The system is now solved.
y-x=c
Consider the first equation. Subtract x from both sides.
y-x=c,x^{2}+y^{2}=13
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-x=c
Solve y-x=c for y by isolating y on the left hand side of the equal sign.
y=x+c
Subtract -x from both sides of the equation.
x^{2}+\left(x+c\right)^{2}=13
Substitute x+c for y in the other equation, x^{2}+y^{2}=13.
x^{2}+x^{2}+2cx+c^{2}=13
Square x+c.
2x^{2}+2cx+c^{2}=13
Add x^{2} to x^{2}.
2x^{2}+2cx+c^{2}-13=0
Subtract 13 from both sides of the equation.
x=\frac{-2c±\sqrt{\left(2c\right)^{2}-4\times 2\left(c^{2}-13\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 1\times 2c for b, and c^{2}-13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2c±\sqrt{4c^{2}-4\times 2\left(c^{2}-13\right)}}{2\times 2}
Square 1\times 1\times 2c.
x=\frac{-2c±\sqrt{4c^{2}-8\left(c^{2}-13\right)}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
x=\frac{-2c±\sqrt{4c^{2}+104-8c^{2}}}{2\times 2}
Multiply -8 times c^{2}-13.
x=\frac{-2c±\sqrt{104-4c^{2}}}{2\times 2}
Add 4c^{2} to -8c^{2}+104.
x=\frac{-2c±2\sqrt{26-c^{2}}}{2\times 2}
Take the square root of 104-4c^{2}.
x=\frac{-2c±2\sqrt{26-c^{2}}}{4}
Multiply 2 times 1+1\times 1^{2}.
x=\frac{2\sqrt{26-c^{2}}-2c}{4}
Now solve the equation x=\frac{-2c±2\sqrt{26-c^{2}}}{4} when ± is plus. Add -2c to 2\sqrt{26-c^{2}}.
x=\frac{\sqrt{26-c^{2}}-c}{2}
Divide -2c+2\sqrt{26-c^{2}} by 4.
x=\frac{-2\sqrt{26-c^{2}}-2c}{4}
Now solve the equation x=\frac{-2c±2\sqrt{26-c^{2}}}{4} when ± is minus. Subtract 2\sqrt{26-c^{2}} from -2c.
x=\frac{-\sqrt{26-c^{2}}-c}{2}
Divide -2c-2\sqrt{26-c^{2}} by 4.
y=\frac{\sqrt{26-c^{2}}-c}{2}+c
There are two solutions for x: \frac{-c+\sqrt{26-c^{2}}}{2} and \frac{-c-\sqrt{26-c^{2}}}{2}. Substitute \frac{-c+\sqrt{26-c^{2}}}{2} for x in the equation y=x+c to find the corresponding solution for y that satisfies both equations.
y=\frac{-\sqrt{26-c^{2}}-c}{2}+c
Now substitute \frac{-c-\sqrt{26-c^{2}}}{2} for x in the equation y=x+c and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{\sqrt{26-c^{2}}-c}{2}+c,x=\frac{\sqrt{26-c^{2}}-c}{2}\text{ or }y=\frac{-\sqrt{26-c^{2}}-c}{2}+c,x=\frac{-\sqrt{26-c^{2}}-c}{2}
The system is now solved.