Solve for y, x
x=5750
y=7250
Graph
Share
Copied to clipboard
y-x=1500
Consider the first equation. Subtract x from both sides.
y-x=1500,0.1y+0.06x=1070
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-x=1500
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
y=x+1500
Add x to both sides of the equation.
0.1\left(x+1500\right)+0.06x=1070
Substitute x+1500 for y in the other equation, 0.1y+0.06x=1070.
0.1x+150+0.06x=1070
Multiply 0.1 times x+1500.
0.16x+150=1070
Add \frac{x}{10} to \frac{3x}{50}.
0.16x=920
Subtract 150 from both sides of the equation.
x=5750
Divide both sides of the equation by 0.16, which is the same as multiplying both sides by the reciprocal of the fraction.
y=5750+1500
Substitute 5750 for x in y=x+1500. Because the resulting equation contains only one variable, you can solve for y directly.
y=7250
Add 1500 to 5750.
y=7250,x=5750
The system is now solved.
y-x=1500
Consider the first equation. Subtract x from both sides.
y-x=1500,0.1y+0.06x=1070
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\0.1&0.06\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1500\\1070\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\0.1&0.06\end{matrix}\right))\left(\begin{matrix}1&-1\\0.1&0.06\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\0.1&0.06\end{matrix}\right))\left(\begin{matrix}1500\\1070\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\0.1&0.06\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\0.1&0.06\end{matrix}\right))\left(\begin{matrix}1500\\1070\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\0.1&0.06\end{matrix}\right))\left(\begin{matrix}1500\\1070\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{0.06}{0.06-\left(-0.1\right)}&-\frac{-1}{0.06-\left(-0.1\right)}\\-\frac{0.1}{0.06-\left(-0.1\right)}&\frac{1}{0.06-\left(-0.1\right)}\end{matrix}\right)\left(\begin{matrix}1500\\1070\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0.375&6.25\\-0.625&6.25\end{matrix}\right)\left(\begin{matrix}1500\\1070\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0.375\times 1500+6.25\times 1070\\-0.625\times 1500+6.25\times 1070\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}7250\\5750\end{matrix}\right)
Do the arithmetic.
y=7250,x=5750
Extract the matrix elements y and x.
y-x=1500
Consider the first equation. Subtract x from both sides.
y-x=1500,0.1y+0.06x=1070
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.1y+0.1\left(-1\right)x=0.1\times 1500,0.1y+0.06x=1070
To make y and \frac{y}{10} equal, multiply all terms on each side of the first equation by 0.1 and all terms on each side of the second by 1.
0.1y-0.1x=150,0.1y+0.06x=1070
Simplify.
0.1y-0.1y-0.1x-0.06x=150-1070
Subtract 0.1y+0.06x=1070 from 0.1y-0.1x=150 by subtracting like terms on each side of the equal sign.
-0.1x-0.06x=150-1070
Add \frac{y}{10} to -\frac{y}{10}. Terms \frac{y}{10} and -\frac{y}{10} cancel out, leaving an equation with only one variable that can be solved.
-0.16x=150-1070
Add -\frac{x}{10} to -\frac{3x}{50}.
-0.16x=-920
Add 150 to -1070.
x=5750
Divide both sides of the equation by -0.16, which is the same as multiplying both sides by the reciprocal of the fraction.
0.1y+0.06\times 5750=1070
Substitute 5750 for x in 0.1y+0.06x=1070. Because the resulting equation contains only one variable, you can solve for y directly.
0.1y+345=1070
Multiply 0.06 times 5750.
0.1y=725
Subtract 345 from both sides of the equation.
y=7250
Multiply both sides by 10.
y=7250,x=5750
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}