Solve for y, p, q
y=0.00000000000224199227015488429507433340999035730776
p=0.01517
q=0.98483
Share
Copied to clipboard
y=0.01517^{10}+0.01517^{9}\times 0.98483^{1}\times 10+0.01517^{8}\times 0.98483^{2}\times 45+0.01517^{7}\times 0.98483^{3}\times 12
Consider the first equation. Insert the known values of variables into the equation.
y=0.00000000000000000064543989795087781156965042605449+0.01517^{9}\times 0.98483^{1}\times 10+0.01517^{8}\times 0.98483^{2}\times 45+0.01517^{7}\times 0.98483^{3}\times 12
Calculate 0.01517 to the power of 10 and get 0.00000000000000000064543989795087781156965042605449.
y=0.00000000000000000064543989795087781156965042605449+0.000000000000000042547125771316928910326329997\times 0.98483^{1}\times 10+0.01517^{8}\times 0.98483^{2}\times 45+0.01517^{7}\times 0.98483^{3}\times 12
Calculate 0.01517 to the power of 9 and get 0.000000000000000042547125771316928910326329997.
y=0.00000000000000000064543989795087781156965042605449+0.000000000000000042547125771316928910326329997\times 0.98483\times 10+0.01517^{8}\times 0.98483^{2}\times 45+0.01517^{7}\times 0.98483^{3}\times 12
Calculate 0.98483 to the power of 1 and get 0.98483.
y=0.00000000000000000064543989795087781156965042605449+0.00000000000000004190168587336605109875667957094551\times 10+0.01517^{8}\times 0.98483^{2}\times 45+0.01517^{7}\times 0.98483^{3}\times 12
Multiply 0.000000000000000042547125771316928910326329997 and 0.98483 to get 0.00000000000000004190168587336605109875667957094551.
y=0.00000000000000000064543989795087781156965042605449+0.0000000000000004190168587336605109875667957094551+0.01517^{8}\times 0.98483^{2}\times 45+0.01517^{7}\times 0.98483^{3}\times 12
Multiply 0.00000000000000004190168587336605109875667957094551 and 10 to get 0.0000000000000004190168587336605109875667957094551.
y=0.00000000000000041966229863161138879913644613550959+0.01517^{8}\times 0.98483^{2}\times 45+0.01517^{7}\times 0.98483^{3}\times 12
Add 0.00000000000000000064543989795087781156965042605449 and 0.0000000000000004190168587336605109875667957094551 to get 0.00000000000000041966229863161138879913644613550959.
y=0.00000000000000041966229863161138879913644613550959+0.0000000000000028046885808382945886833441\times 0.98483^{2}\times 45+0.01517^{7}\times 0.98483^{3}\times 12
Calculate 0.01517 to the power of 8 and get 0.0000000000000028046885808382945886833441.
y=0.00000000000000041966229863161138879913644613550959+0.0000000000000028046885808382945886833441\times 0.9698901289\times 45+0.01517^{7}\times 0.98483^{3}\times 12
Calculate 0.98483 to the power of 2 and get 0.9698901289.
y=0.00000000000000041966229863161138879913644613550959+0.00000000000000272023976919361160867426109043205449\times 45+0.01517^{7}\times 0.98483^{3}\times 12
Multiply 0.0000000000000028046885808382945886833441 and 0.9698901289 to get 0.00000000000000272023976919361160867426109043205449.
y=0.00000000000000041966229863161138879913644613550959+0.00000000000012241078961371252239034174906944245205+0.01517^{7}\times 0.98483^{3}\times 12
Multiply 0.00000000000000272023976919361160867426109043205449 and 45 to get 0.00000000000012241078961371252239034174906944245205.
y=0.00000000000012283045191234413377914088551557796164+0.01517^{7}\times 0.98483^{3}\times 12
Add 0.00000000000000041966229863161138879913644613550959 and 0.00000000000012241078961371252239034174906944245205 to get 0.00000000000012283045191234413377914088551557796164.
y=0.00000000000012283045191234413377914088551557796164+0.00000000000018488388799197723063173\times 0.98483^{3}\times 12
Calculate 0.01517 to the power of 7 and get 0.00000000000018488388799197723063173.
y=0.00000000000012283045191234413377914088551557796164+0.00000000000018488388799197723063173\times 0.955176895644587\times 12
Calculate 0.98483 to the power of 3 and get 0.955176895644587.
y=0.00000000000012283045191234413377914088551557796164+0.00000000000017659681818687834677459937703956494551\times 12
Multiply 0.00000000000018488388799197723063173 and 0.955176895644587 to get 0.00000000000017659681818687834677459937703956494551.
y=0.00000000000012283045191234413377914088551557796164+0.00000000000211916181824254016129519252447477934612
Multiply 0.00000000000017659681818687834677459937703956494551 and 12 to get 0.00000000000211916181824254016129519252447477934612.
y=0.00000000000224199227015488429507433340999035730776
Add 0.00000000000012283045191234413377914088551557796164 and 0.00000000000211916181824254016129519252447477934612 to get 0.00000000000224199227015488429507433340999035730776.
y=0.00000000000224199227015488429507433340999035730776 p=0.01517 q=0.98483
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}