Solve for x, y
\left\{\begin{matrix}x=\frac{5\left(-2\sqrt{1-k^{2}}+k\right)}{4-5k^{2}}\text{, }y=\frac{2\left(-5k\sqrt{1-k^{2}}+2\right)}{4-5k^{2}}\text{; }x=\frac{5\left(2\sqrt{1-k^{2}}+k\right)}{4-5k^{2}}\text{, }y=\frac{2\left(5k\sqrt{1-k^{2}}+2\right)}{4-5k^{2}}\text{, }&|k|\neq \frac{2\sqrt{5}}{5}\text{ and }|k|\leq 1\\x=-\frac{5}{2k}\text{, }y=-\frac{3}{2}=-1.5\text{, }&|k|=\frac{2\sqrt{5}}{5}\end{matrix}\right.
Solve for x, y (complex solution)
\left\{\begin{matrix}x=\frac{5\left(-2\sqrt{1-k^{2}}+k\right)}{4-5k^{2}}\text{, }y=\frac{2\left(-5k\sqrt{1-k^{2}}+2\right)}{4-5k^{2}}\text{; }x=\frac{5\left(2\sqrt{1-k^{2}}+k\right)}{4-5k^{2}}\text{, }y=\frac{2\left(5k\sqrt{1-k^{2}}+2\right)}{4-5k^{2}}\text{, }&k\neq -\frac{2\sqrt{5}}{5}\text{ and }k\neq \frac{2\sqrt{5}}{5}\\x=-\frac{5}{2k}\text{, }y=-\frac{3}{2}=-1.5\text{, }&k=-\frac{2\sqrt{5}}{5}\text{ or }k=\frac{2\sqrt{5}}{5}\end{matrix}\right.
Graph
Share
Copied to clipboard
y-kx=1
Consider the first equation. Subtract kx from both sides.
4x^{2}-5y^{2}=20
Consider the second equation. Multiply both sides of the equation by 20, the least common multiple of 5,4.
y+\left(-k\right)x=1,4x^{2}-5y^{2}=20
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y+\left(-k\right)x=1
Solve y+\left(-k\right)x=1 for y by isolating y on the left hand side of the equal sign.
y=kx+1
Subtract \left(-k\right)x from both sides of the equation.
4x^{2}-5\left(kx+1\right)^{2}=20
Substitute kx+1 for y in the other equation, 4x^{2}-5y^{2}=20.
4x^{2}-5\left(k^{2}x^{2}+2kx+1\right)=20
Square kx+1.
4x^{2}+\left(-5k^{2}\right)x^{2}+\left(-10k\right)x-5=20
Multiply -5 times k^{2}x^{2}+2kx+1.
\left(4-5k^{2}\right)x^{2}+\left(-10k\right)x-5=20
Add 4x^{2} to \left(-5k^{2}\right)x^{2}.
\left(4-5k^{2}\right)x^{2}+\left(-10k\right)x-25=0
Subtract 20 from both sides of the equation.
x=\frac{-\left(-10k\right)±\sqrt{\left(-10k\right)^{2}-4\left(4-5k^{2}\right)\left(-25\right)}}{2\left(4-5k^{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4-5k^{2} for a, -5\times 2k for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10k\right)±\sqrt{100k^{2}-4\left(4-5k^{2}\right)\left(-25\right)}}{2\left(4-5k^{2}\right)}
Square -5\times 2k.
x=\frac{-\left(-10k\right)±\sqrt{100k^{2}+\left(20k^{2}-16\right)\left(-25\right)}}{2\left(4-5k^{2}\right)}
Multiply -4 times 4-5k^{2}.
x=\frac{-\left(-10k\right)±\sqrt{100k^{2}+400-500k^{2}}}{2\left(4-5k^{2}\right)}
Multiply -16+20k^{2} times -25.
x=\frac{-\left(-10k\right)±\sqrt{400-400k^{2}}}{2\left(4-5k^{2}\right)}
Add 100k^{2} to 400-500k^{2}.
x=\frac{-\left(-10k\right)±20\sqrt{1-k^{2}}}{2\left(4-5k^{2}\right)}
Take the square root of 400-400k^{2}.
x=\frac{10k±20\sqrt{1-k^{2}}}{8-10k^{2}}
Multiply 2 times 4-5k^{2}.
x=\frac{20\sqrt{1-k^{2}}+10k}{8-10k^{2}}
Now solve the equation x=\frac{10k±20\sqrt{1-k^{2}}}{8-10k^{2}} when ± is plus. Add 10k to 20\sqrt{1-k^{2}}.
x=\frac{5\left(2\sqrt{1-k^{2}}+k\right)}{4-5k^{2}}
Divide 10k+20\sqrt{1-k^{2}} by 8-10k^{2}.
x=\frac{-20\sqrt{1-k^{2}}+10k}{8-10k^{2}}
Now solve the equation x=\frac{10k±20\sqrt{1-k^{2}}}{8-10k^{2}} when ± is minus. Subtract 20\sqrt{1-k^{2}} from 10k.
x=\frac{5\left(-2\sqrt{1-k^{2}}+k\right)}{4-5k^{2}}
Divide 10k-20\sqrt{1-k^{2}} by 8-10k^{2}.
y=k\times \frac{5\left(2\sqrt{1-k^{2}}+k\right)}{4-5k^{2}}+1
There are two solutions for x: \frac{5\left(k+2\sqrt{1-k^{2}}\right)}{4-5k^{2}} and \frac{5\left(k-2\sqrt{1-k^{2}}\right)}{4-5k^{2}}. Substitute \frac{5\left(k+2\sqrt{1-k^{2}}\right)}{4-5k^{2}} for x in the equation y=kx+1 to find the corresponding solution for y that satisfies both equations.
y=\frac{5\left(2\sqrt{1-k^{2}}+k\right)}{4-5k^{2}}k+1
Multiply k times \frac{5\left(k+2\sqrt{1-k^{2}}\right)}{4-5k^{2}}.
y=1+\frac{5\left(2\sqrt{1-k^{2}}+k\right)}{4-5k^{2}}k
Add k\times \frac{5\left(k+2\sqrt{1-k^{2}}\right)}{4-5k^{2}} to 1.
y=k\times \frac{5\left(-2\sqrt{1-k^{2}}+k\right)}{4-5k^{2}}+1
Now substitute \frac{5\left(k-2\sqrt{1-k^{2}}\right)}{4-5k^{2}} for x in the equation y=kx+1 and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{5\left(-2\sqrt{1-k^{2}}+k\right)}{4-5k^{2}}k+1
Multiply k times \frac{5\left(k-2\sqrt{1-k^{2}}\right)}{4-5k^{2}}.
y=1+\frac{5\left(-2\sqrt{1-k^{2}}+k\right)}{4-5k^{2}}k
Add k\times \frac{5\left(k-2\sqrt{1-k^{2}}\right)}{4-5k^{2}} to 1.
y=1+\frac{5\left(2\sqrt{1-k^{2}}+k\right)}{4-5k^{2}}k,x=\frac{5\left(2\sqrt{1-k^{2}}+k\right)}{4-5k^{2}}\text{ or }y=1+\frac{5\left(-2\sqrt{1-k^{2}}+k\right)}{4-5k^{2}}k,x=\frac{5\left(-2\sqrt{1-k^{2}}+k\right)}{4-5k^{2}}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}