Skip to main content
Solve for x, y
Tick mark Image
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

y=kx-k\sqrt{3}
Consider the first equation. Use the distributive property to multiply k by x-\sqrt{3}.
y-kx=-k\sqrt{3}
Subtract kx from both sides.
x^{2}+4y^{2}=4
Consider the second equation. Add 4 to both sides. Anything plus zero gives itself.
y+\left(-k\right)x=-\sqrt{3}k,x^{2}+4y^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y+\left(-k\right)x=-\sqrt{3}k
Solve y+\left(-k\right)x=-\sqrt{3}k for y by isolating y on the left hand side of the equal sign.
y=kx-\sqrt{3}k
Subtract \left(-k\right)x from both sides of the equation.
x^{2}+4\left(kx-\sqrt{3}k\right)^{2}=4
Substitute kx-\sqrt{3}k for y in the other equation, x^{2}+4y^{2}=4.
x^{2}+4\left(k^{2}x^{2}+2k\left(-\sqrt{3}k\right)x+\left(-\sqrt{3}k\right)^{2}\right)=4
Square kx-\sqrt{3}k.
x^{2}+4k^{2}x^{2}+8k\left(-\sqrt{3}k\right)x+4\left(-\sqrt{3}k\right)^{2}=4
Multiply 4 times k^{2}x^{2}+2k\left(-\sqrt{3}k\right)x+\left(-\sqrt{3}k\right)^{2}.
\left(4k^{2}+1\right)x^{2}+8k\left(-\sqrt{3}k\right)x+4\left(-\sqrt{3}k\right)^{2}=4
Add x^{2} to 4k^{2}x^{2}.
\left(4k^{2}+1\right)x^{2}+8k\left(-\sqrt{3}k\right)x+4\left(-\sqrt{3}k\right)^{2}-4=0
Subtract 4 from both sides of the equation.
x=\frac{-8k\left(-\sqrt{3}k\right)±\sqrt{\left(8k\left(-\sqrt{3}k\right)\right)^{2}-4\left(4k^{2}+1\right)\left(12k^{2}-4\right)}}{2\left(4k^{2}+1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+4k^{2} for a, 4\times 2k\left(-k\sqrt{3}\right) for b, and 12k^{2}-4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8k\left(-\sqrt{3}k\right)±\sqrt{192k^{4}-4\left(4k^{2}+1\right)\left(12k^{2}-4\right)}}{2\left(4k^{2}+1\right)}
Square 4\times 2k\left(-k\sqrt{3}\right).
x=\frac{-8k\left(-\sqrt{3}k\right)±\sqrt{192k^{4}+\left(-16k^{2}-4\right)\left(12k^{2}-4\right)}}{2\left(4k^{2}+1\right)}
Multiply -4 times 1+4k^{2}.
x=\frac{-8k\left(-\sqrt{3}k\right)±\sqrt{192k^{4}+16+16k^{2}-192k^{4}}}{2\left(4k^{2}+1\right)}
Multiply -4-16k^{2} times 12k^{2}-4.
x=\frac{-8k\left(-\sqrt{3}k\right)±\sqrt{16k^{2}+16}}{2\left(4k^{2}+1\right)}
Add 192k^{4} to 16k^{2}-192k^{4}+16.
x=\frac{-8k\left(-\sqrt{3}k\right)±4\sqrt{k^{2}+1}}{2\left(4k^{2}+1\right)}
Take the square root of 16k^{2}+16.
x=\frac{8\sqrt{3}k^{2}±4\sqrt{k^{2}+1}}{8k^{2}+2}
Multiply 2 times 1+4k^{2}.
x=\frac{8\sqrt{3}k^{2}+4\sqrt{k^{2}+1}}{8k^{2}+2}
Now solve the equation x=\frac{8\sqrt{3}k^{2}±4\sqrt{k^{2}+1}}{8k^{2}+2} when ± is plus. Add 8\sqrt{3}k^{2} to 4\sqrt{k^{2}+1}.
x=\frac{2\left(2\sqrt{3}k^{2}+\sqrt{k^{2}+1}\right)}{4k^{2}+1}
Divide 8\sqrt{3}k^{2}+4\sqrt{k^{2}+1} by 2+8k^{2}.
x=\frac{8\sqrt{3}k^{2}-4\sqrt{k^{2}+1}}{8k^{2}+2}
Now solve the equation x=\frac{8\sqrt{3}k^{2}±4\sqrt{k^{2}+1}}{8k^{2}+2} when ± is minus. Subtract 4\sqrt{k^{2}+1} from 8\sqrt{3}k^{2}.
x=\frac{2\left(2\sqrt{3}k^{2}-\sqrt{k^{2}+1}\right)}{4k^{2}+1}
Divide 8\sqrt{3}k^{2}-4\sqrt{k^{2}+1} by 2+8k^{2}.
y=k\times \frac{2\left(2\sqrt{3}k^{2}+\sqrt{k^{2}+1}\right)}{4k^{2}+1}-\sqrt{3}k
There are two solutions for x: \frac{2\left(2k^{2}\sqrt{3}+\sqrt{1+k^{2}}\right)}{1+4k^{2}} and \frac{2\left(2k^{2}\sqrt{3}-\sqrt{1+k^{2}}\right)}{1+4k^{2}}. Substitute \frac{2\left(2k^{2}\sqrt{3}+\sqrt{1+k^{2}}\right)}{1+4k^{2}} for x in the equation y=kx-\sqrt{3}k to find the corresponding solution for y that satisfies both equations.
y=\frac{2\left(2\sqrt{3}k^{2}+\sqrt{k^{2}+1}\right)}{4k^{2}+1}k-\sqrt{3}k
Multiply k times \frac{2\left(2k^{2}\sqrt{3}+\sqrt{1+k^{2}}\right)}{1+4k^{2}}.
y=k\times \frac{2\left(2\sqrt{3}k^{2}-\sqrt{k^{2}+1}\right)}{4k^{2}+1}-\sqrt{3}k
Now substitute \frac{2\left(2k^{2}\sqrt{3}-\sqrt{1+k^{2}}\right)}{1+4k^{2}} for x in the equation y=kx-\sqrt{3}k and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{2\left(2\sqrt{3}k^{2}-\sqrt{k^{2}+1}\right)}{4k^{2}+1}k-\sqrt{3}k
Multiply k times \frac{2\left(2k^{2}\sqrt{3}-\sqrt{1+k^{2}}\right)}{1+4k^{2}}.
y=\frac{2\left(2\sqrt{3}k^{2}+\sqrt{k^{2}+1}\right)}{4k^{2}+1}k-\sqrt{3}k,x=\frac{2\left(2\sqrt{3}k^{2}+\sqrt{k^{2}+1}\right)}{4k^{2}+1}\text{ or }y=\frac{2\left(2\sqrt{3}k^{2}-\sqrt{k^{2}+1}\right)}{4k^{2}+1}k-\sqrt{3}k,x=\frac{2\left(2\sqrt{3}k^{2}-\sqrt{k^{2}+1}\right)}{4k^{2}+1}
The system is now solved.