Solve for y, a, x
x=-1
y=-1
a=0.5
Share
Copied to clipboard
y=0.5\left(-1\right)^{2}-0.5\left(-1\right)-2
Consider the first equation. Insert the known values of variables into the equation.
y=0.5\times 1-0.5\left(-1\right)-2
Calculate -1 to the power of 2 and get 1.
y=0.5-0.5\left(-1\right)-2
Multiply 0.5 and 1 to get 0.5.
y=0.5+0.5-2
Multiply -0.5 and -1 to get 0.5.
y=1-2
Add 0.5 and 0.5 to get 1.
y=-1
Subtract 2 from 1 to get -1.
y=-1 a=0.5 x=-1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}