Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-\frac{1}{5}x=750
Consider the first equation. Subtract \frac{1}{5}x from both sides.
y-\frac{7}{10}x=1500
Consider the second equation. Subtract \frac{7}{10}x from both sides.
y-\frac{1}{5}x=750,y-\frac{7}{10}x=1500
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-\frac{1}{5}x=750
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
y=\frac{1}{5}x+750
Add \frac{x}{5} to both sides of the equation.
\frac{1}{5}x+750-\frac{7}{10}x=1500
Substitute \frac{x}{5}+750 for y in the other equation, y-\frac{7}{10}x=1500.
-\frac{1}{2}x+750=1500
Add \frac{x}{5} to -\frac{7x}{10}.
-\frac{1}{2}x=750
Subtract 750 from both sides of the equation.
x=-1500
Multiply both sides by -2.
y=\frac{1}{5}\left(-1500\right)+750
Substitute -1500 for x in y=\frac{1}{5}x+750. Because the resulting equation contains only one variable, you can solve for y directly.
y=-300+750
Multiply \frac{1}{5} times -1500.
y=450
Add 750 to -300.
y=450,x=-1500
The system is now solved.
y-\frac{1}{5}x=750
Consider the first equation. Subtract \frac{1}{5}x from both sides.
y-\frac{7}{10}x=1500
Consider the second equation. Subtract \frac{7}{10}x from both sides.
y-\frac{1}{5}x=750,y-\frac{7}{10}x=1500
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-\frac{1}{5}\\1&-\frac{7}{10}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}750\\1500\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-\frac{1}{5}\\1&-\frac{7}{10}\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{5}\\1&-\frac{7}{10}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{5}\\1&-\frac{7}{10}\end{matrix}\right))\left(\begin{matrix}750\\1500\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-\frac{1}{5}\\1&-\frac{7}{10}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{5}\\1&-\frac{7}{10}\end{matrix}\right))\left(\begin{matrix}750\\1500\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{5}\\1&-\frac{7}{10}\end{matrix}\right))\left(\begin{matrix}750\\1500\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{7}{10}}{-\frac{7}{10}-\left(-\frac{1}{5}\right)}&-\frac{-\frac{1}{5}}{-\frac{7}{10}-\left(-\frac{1}{5}\right)}\\-\frac{1}{-\frac{7}{10}-\left(-\frac{1}{5}\right)}&\frac{1}{-\frac{7}{10}-\left(-\frac{1}{5}\right)}\end{matrix}\right)\left(\begin{matrix}750\\1500\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5}&-\frac{2}{5}\\2&-2\end{matrix}\right)\left(\begin{matrix}750\\1500\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5}\times 750-\frac{2}{5}\times 1500\\2\times 750-2\times 1500\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}450\\-1500\end{matrix}\right)
Do the arithmetic.
y=450,x=-1500
Extract the matrix elements y and x.
y-\frac{1}{5}x=750
Consider the first equation. Subtract \frac{1}{5}x from both sides.
y-\frac{7}{10}x=1500
Consider the second equation. Subtract \frac{7}{10}x from both sides.
y-\frac{1}{5}x=750,y-\frac{7}{10}x=1500
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
y-y-\frac{1}{5}x+\frac{7}{10}x=750-1500
Subtract y-\frac{7}{10}x=1500 from y-\frac{1}{5}x=750 by subtracting like terms on each side of the equal sign.
-\frac{1}{5}x+\frac{7}{10}x=750-1500
Add y to -y. Terms y and -y cancel out, leaving an equation with only one variable that can be solved.
\frac{1}{2}x=750-1500
Add -\frac{x}{5} to \frac{7x}{10}.
\frac{1}{2}x=-750
Add 750 to -1500.
x=-1500
Multiply both sides by 2.
y-\frac{7}{10}\left(-1500\right)=1500
Substitute -1500 for x in y-\frac{7}{10}x=1500. Because the resulting equation contains only one variable, you can solve for y directly.
y+1050=1500
Multiply -\frac{7}{10} times -1500.
y=450
Subtract 1050 from both sides of the equation.
y=450,x=-1500
The system is now solved.