Solve for y, p
y = \frac{2530}{9} = 281\frac{1}{9} \approx 281.111111111
p = \frac{850}{27} = 31\frac{13}{27} \approx 31.481481481
Graph
Share
Copied to clipboard
y-7.5p=45
Consider the first equation. Subtract 7.5p from both sides.
y+0.6p=300
Consider the second equation. Add 0.6p to both sides.
y-7.5p=45,y+0.6p=300
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-7.5p=45
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
y=7.5p+45
Add \frac{15p}{2} to both sides of the equation.
7.5p+45+0.6p=300
Substitute \frac{15p}{2}+45 for y in the other equation, y+0.6p=300.
8.1p+45=300
Add \frac{15p}{2} to \frac{3p}{5}.
8.1p=255
Subtract 45 from both sides of the equation.
p=\frac{850}{27}
Divide both sides of the equation by 8.1, which is the same as multiplying both sides by the reciprocal of the fraction.
y=7.5\times \frac{850}{27}+45
Substitute \frac{850}{27} for p in y=7.5p+45. Because the resulting equation contains only one variable, you can solve for y directly.
y=\frac{2125}{9}+45
Multiply 7.5 times \frac{850}{27} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{2530}{9}
Add 45 to \frac{2125}{9}.
y=\frac{2530}{9},p=\frac{850}{27}
The system is now solved.
y-7.5p=45
Consider the first equation. Subtract 7.5p from both sides.
y+0.6p=300
Consider the second equation. Add 0.6p to both sides.
y-7.5p=45,y+0.6p=300
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-7.5\\1&0.6\end{matrix}\right)\left(\begin{matrix}y\\p\end{matrix}\right)=\left(\begin{matrix}45\\300\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-7.5\\1&0.6\end{matrix}\right))\left(\begin{matrix}1&-7.5\\1&0.6\end{matrix}\right)\left(\begin{matrix}y\\p\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7.5\\1&0.6\end{matrix}\right))\left(\begin{matrix}45\\300\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-7.5\\1&0.6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\p\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7.5\\1&0.6\end{matrix}\right))\left(\begin{matrix}45\\300\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\p\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7.5\\1&0.6\end{matrix}\right))\left(\begin{matrix}45\\300\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\p\end{matrix}\right)=\left(\begin{matrix}\frac{0.6}{0.6-\left(-7.5\right)}&-\frac{-7.5}{0.6-\left(-7.5\right)}\\-\frac{1}{0.6-\left(-7.5\right)}&\frac{1}{0.6-\left(-7.5\right)}\end{matrix}\right)\left(\begin{matrix}45\\300\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\p\end{matrix}\right)=\left(\begin{matrix}\frac{2}{27}&\frac{25}{27}\\-\frac{10}{81}&\frac{10}{81}\end{matrix}\right)\left(\begin{matrix}45\\300\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\p\end{matrix}\right)=\left(\begin{matrix}\frac{2}{27}\times 45+\frac{25}{27}\times 300\\-\frac{10}{81}\times 45+\frac{10}{81}\times 300\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\p\end{matrix}\right)=\left(\begin{matrix}\frac{2530}{9}\\\frac{850}{27}\end{matrix}\right)
Do the arithmetic.
y=\frac{2530}{9},p=\frac{850}{27}
Extract the matrix elements y and p.
y-7.5p=45
Consider the first equation. Subtract 7.5p from both sides.
y+0.6p=300
Consider the second equation. Add 0.6p to both sides.
y-7.5p=45,y+0.6p=300
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
y-y-7.5p-0.6p=45-300
Subtract y+0.6p=300 from y-7.5p=45 by subtracting like terms on each side of the equal sign.
-7.5p-0.6p=45-300
Add y to -y. Terms y and -y cancel out, leaving an equation with only one variable that can be solved.
-8.1p=45-300
Add -\frac{15p}{2} to -\frac{3p}{5}.
-8.1p=-255
Add 45 to -300.
p=\frac{850}{27}
Divide both sides of the equation by -8.1, which is the same as multiplying both sides by the reciprocal of the fraction.
y+0.6\times \frac{850}{27}=300
Substitute \frac{850}{27} for p in y+0.6p=300. Because the resulting equation contains only one variable, you can solve for y directly.
y+\frac{170}{9}=300
Multiply 0.6 times \frac{850}{27} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{2530}{9}
Subtract \frac{170}{9} from both sides of the equation.
y=\frac{2530}{9},p=\frac{850}{27}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}