Solve for y, x
x=22
y=110
Graph
Share
Copied to clipboard
y-5x=0
Consider the first equation. Subtract 5x from both sides.
y-5x=0,y+x=132
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-5x=0
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
y=5x
Add 5x to both sides of the equation.
5x+x=132
Substitute 5x for y in the other equation, y+x=132.
6x=132
Add 5x to x.
x=22
Divide both sides by 6.
y=5\times 22
Substitute 22 for x in y=5x. Because the resulting equation contains only one variable, you can solve for y directly.
y=110
Multiply 5 times 22.
y=110,x=22
The system is now solved.
y-5x=0
Consider the first equation. Subtract 5x from both sides.
y-5x=0,y+x=132
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-5\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\132\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-5\\1&1\end{matrix}\right))\left(\begin{matrix}1&-5\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\1&1\end{matrix}\right))\left(\begin{matrix}0\\132\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-5\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\1&1\end{matrix}\right))\left(\begin{matrix}0\\132\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\1&1\end{matrix}\right))\left(\begin{matrix}0\\132\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-5\right)}&-\frac{-5}{1-\left(-5\right)}\\-\frac{1}{1-\left(-5\right)}&\frac{1}{1-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}0\\132\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{5}{6}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}0\\132\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\times 132\\\frac{1}{6}\times 132\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}110\\22\end{matrix}\right)
Do the arithmetic.
y=110,x=22
Extract the matrix elements y and x.
y-5x=0
Consider the first equation. Subtract 5x from both sides.
y-5x=0,y+x=132
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
y-y-5x-x=-132
Subtract y+x=132 from y-5x=0 by subtracting like terms on each side of the equal sign.
-5x-x=-132
Add y to -y. Terms y and -y cancel out, leaving an equation with only one variable that can be solved.
-6x=-132
Add -5x to -x.
x=22
Divide both sides by -6.
y+22=132
Substitute 22 for x in y+x=132. Because the resulting equation contains only one variable, you can solve for y directly.
y=110
Subtract 22 from both sides of the equation.
y=110,x=22
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}