Solve for y, x
x=12
y=49800
Graph
Share
Copied to clipboard
y-900x=39000
Consider the first equation. Subtract 900x from both sides.
y-400x=45000
Consider the second equation. Subtract 400x from both sides.
y-900x=39000,y-400x=45000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-900x=39000
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
y=900x+39000
Add 900x to both sides of the equation.
900x+39000-400x=45000
Substitute 900x+39000 for y in the other equation, y-400x=45000.
500x+39000=45000
Add 900x to -400x.
500x=6000
Subtract 39000 from both sides of the equation.
x=12
Divide both sides by 500.
y=900\times 12+39000
Substitute 12 for x in y=900x+39000. Because the resulting equation contains only one variable, you can solve for y directly.
y=10800+39000
Multiply 900 times 12.
y=49800
Add 39000 to 10800.
y=49800,x=12
The system is now solved.
y-900x=39000
Consider the first equation. Subtract 900x from both sides.
y-400x=45000
Consider the second equation. Subtract 400x from both sides.
y-900x=39000,y-400x=45000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-900\\1&-400\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}39000\\45000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-900\\1&-400\end{matrix}\right))\left(\begin{matrix}1&-900\\1&-400\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-900\\1&-400\end{matrix}\right))\left(\begin{matrix}39000\\45000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-900\\1&-400\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-900\\1&-400\end{matrix}\right))\left(\begin{matrix}39000\\45000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-900\\1&-400\end{matrix}\right))\left(\begin{matrix}39000\\45000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{400}{-400-\left(-900\right)}&-\frac{-900}{-400-\left(-900\right)}\\-\frac{1}{-400-\left(-900\right)}&\frac{1}{-400-\left(-900\right)}\end{matrix}\right)\left(\begin{matrix}39000\\45000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{5}&\frac{9}{5}\\-\frac{1}{500}&\frac{1}{500}\end{matrix}\right)\left(\begin{matrix}39000\\45000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{5}\times 39000+\frac{9}{5}\times 45000\\-\frac{1}{500}\times 39000+\frac{1}{500}\times 45000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}49800\\12\end{matrix}\right)
Do the arithmetic.
y=49800,x=12
Extract the matrix elements y and x.
y-900x=39000
Consider the first equation. Subtract 900x from both sides.
y-400x=45000
Consider the second equation. Subtract 400x from both sides.
y-900x=39000,y-400x=45000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
y-y-900x+400x=39000-45000
Subtract y-400x=45000 from y-900x=39000 by subtracting like terms on each side of the equal sign.
-900x+400x=39000-45000
Add y to -y. Terms y and -y cancel out, leaving an equation with only one variable that can be solved.
-500x=39000-45000
Add -900x to 400x.
-500x=-6000
Add 39000 to -45000.
x=12
Divide both sides by -500.
y-400\times 12=45000
Substitute 12 for x in y-400x=45000. Because the resulting equation contains only one variable, you can solve for y directly.
y-4800=45000
Multiply -400 times 12.
y=49800
Add 4800 to both sides of the equation.
y=49800,x=12
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}