Solve for y, x
x=34
y=477
Graph
Share
Copied to clipboard
y-3x=375
Consider the first equation. Subtract 3x from both sides.
y-2x=409
Consider the second equation. Subtract 2x from both sides.
y-3x=375,y-2x=409
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-3x=375
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
y=3x+375
Add 3x to both sides of the equation.
3x+375-2x=409
Substitute 375+3x for y in the other equation, y-2x=409.
x+375=409
Add 3x to -2x.
x=34
Subtract 375 from both sides of the equation.
y=3\times 34+375
Substitute 34 for x in y=3x+375. Because the resulting equation contains only one variable, you can solve for y directly.
y=102+375
Multiply 3 times 34.
y=477
Add 375 to 102.
y=477,x=34
The system is now solved.
y-3x=375
Consider the first equation. Subtract 3x from both sides.
y-2x=409
Consider the second equation. Subtract 2x from both sides.
y-3x=375,y-2x=409
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}375\\409\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}375\\409\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-3\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}375\\409\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}375\\409\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-3\right)}&-\frac{-3}{-2-\left(-3\right)}\\-\frac{1}{-2-\left(-3\right)}&\frac{1}{-2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}375\\409\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2&3\\-1&1\end{matrix}\right)\left(\begin{matrix}375\\409\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\times 375+3\times 409\\-375+409\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}477\\34\end{matrix}\right)
Do the arithmetic.
y=477,x=34
Extract the matrix elements y and x.
y-3x=375
Consider the first equation. Subtract 3x from both sides.
y-2x=409
Consider the second equation. Subtract 2x from both sides.
y-3x=375,y-2x=409
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
y-y-3x+2x=375-409
Subtract y-2x=409 from y-3x=375 by subtracting like terms on each side of the equal sign.
-3x+2x=375-409
Add y to -y. Terms y and -y cancel out, leaving an equation with only one variable that can be solved.
-x=375-409
Add -3x to 2x.
-x=-34
Add 375 to -409.
x=34
Divide both sides by -1.
y-2\times 34=409
Substitute 34 for x in y-2x=409. Because the resulting equation contains only one variable, you can solve for y directly.
y-68=409
Multiply -2 times 34.
y=477
Add 68 to both sides of the equation.
y=477,x=34
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}