Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-3x=1
Consider the first equation. Subtract 3x from both sides.
y-3x=1,x^{2}+y^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-3x=1
Solve y-3x=1 for y by isolating y on the left hand side of the equal sign.
y=3x+1
Subtract -3x from both sides of the equation.
x^{2}+\left(3x+1\right)^{2}=4
Substitute 3x+1 for y in the other equation, x^{2}+y^{2}=4.
x^{2}+9x^{2}+6x+1=4
Square 3x+1.
10x^{2}+6x+1=4
Add x^{2} to 9x^{2}.
10x^{2}+6x-3=0
Subtract 4 from both sides of the equation.
x=\frac{-6±\sqrt{6^{2}-4\times 10\left(-3\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 3^{2} for a, 1\times 1\times 2\times 3 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 10\left(-3\right)}}{2\times 10}
Square 1\times 1\times 2\times 3.
x=\frac{-6±\sqrt{36-40\left(-3\right)}}{2\times 10}
Multiply -4 times 1+1\times 3^{2}.
x=\frac{-6±\sqrt{36+120}}{2\times 10}
Multiply -40 times -3.
x=\frac{-6±\sqrt{156}}{2\times 10}
Add 36 to 120.
x=\frac{-6±2\sqrt{39}}{2\times 10}
Take the square root of 156.
x=\frac{-6±2\sqrt{39}}{20}
Multiply 2 times 1+1\times 3^{2}.
x=\frac{2\sqrt{39}-6}{20}
Now solve the equation x=\frac{-6±2\sqrt{39}}{20} when ± is plus. Add -6 to 2\sqrt{39}.
x=\frac{\sqrt{39}-3}{10}
Divide -6+2\sqrt{39} by 20.
x=\frac{-2\sqrt{39}-6}{20}
Now solve the equation x=\frac{-6±2\sqrt{39}}{20} when ± is minus. Subtract 2\sqrt{39} from -6.
x=\frac{-\sqrt{39}-3}{10}
Divide -6-2\sqrt{39} by 20.
y=3\times \frac{\sqrt{39}-3}{10}+1
There are two solutions for x: \frac{-3+\sqrt{39}}{10} and \frac{-3-\sqrt{39}}{10}. Substitute \frac{-3+\sqrt{39}}{10} for x in the equation y=3x+1 to find the corresponding solution for y that satisfies both equations.
y=3\times \frac{-\sqrt{39}-3}{10}+1
Now substitute \frac{-3-\sqrt{39}}{10} for x in the equation y=3x+1 and solve to find the corresponding solution for y that satisfies both equations.
y=3\times \frac{\sqrt{39}-3}{10}+1,x=\frac{\sqrt{39}-3}{10}\text{ or }y=3\times \frac{-\sqrt{39}-3}{10}+1,x=\frac{-\sqrt{39}-3}{10}
The system is now solved.