Solve for y, x
x=\frac{-\sqrt{39}-3}{10}\approx -0.9244998\text{, }y=\frac{1-3\sqrt{39}}{10}\approx -1.7734994
x=\frac{\sqrt{39}-3}{10}\approx 0.3244998\text{, }y=\frac{3\sqrt{39}+1}{10}\approx 1.9734994
Graph
Share
Copied to clipboard
y-3x=1
Consider the first equation. Subtract 3x from both sides.
y-3x=1,x^{2}+y^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-3x=1
Solve y-3x=1 for y by isolating y on the left hand side of the equal sign.
y=3x+1
Subtract -3x from both sides of the equation.
x^{2}+\left(3x+1\right)^{2}=4
Substitute 3x+1 for y in the other equation, x^{2}+y^{2}=4.
x^{2}+9x^{2}+6x+1=4
Square 3x+1.
10x^{2}+6x+1=4
Add x^{2} to 9x^{2}.
10x^{2}+6x-3=0
Subtract 4 from both sides of the equation.
x=\frac{-6±\sqrt{6^{2}-4\times 10\left(-3\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 3^{2} for a, 1\times 1\times 2\times 3 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 10\left(-3\right)}}{2\times 10}
Square 1\times 1\times 2\times 3.
x=\frac{-6±\sqrt{36-40\left(-3\right)}}{2\times 10}
Multiply -4 times 1+1\times 3^{2}.
x=\frac{-6±\sqrt{36+120}}{2\times 10}
Multiply -40 times -3.
x=\frac{-6±\sqrt{156}}{2\times 10}
Add 36 to 120.
x=\frac{-6±2\sqrt{39}}{2\times 10}
Take the square root of 156.
x=\frac{-6±2\sqrt{39}}{20}
Multiply 2 times 1+1\times 3^{2}.
x=\frac{2\sqrt{39}-6}{20}
Now solve the equation x=\frac{-6±2\sqrt{39}}{20} when ± is plus. Add -6 to 2\sqrt{39}.
x=\frac{\sqrt{39}-3}{10}
Divide -6+2\sqrt{39} by 20.
x=\frac{-2\sqrt{39}-6}{20}
Now solve the equation x=\frac{-6±2\sqrt{39}}{20} when ± is minus. Subtract 2\sqrt{39} from -6.
x=\frac{-\sqrt{39}-3}{10}
Divide -6-2\sqrt{39} by 20.
y=3\times \frac{\sqrt{39}-3}{10}+1
There are two solutions for x: \frac{-3+\sqrt{39}}{10} and \frac{-3-\sqrt{39}}{10}. Substitute \frac{-3+\sqrt{39}}{10} for x in the equation y=3x+1 to find the corresponding solution for y that satisfies both equations.
y=3\times \frac{-\sqrt{39}-3}{10}+1
Now substitute \frac{-3-\sqrt{39}}{10} for x in the equation y=3x+1 and solve to find the corresponding solution for y that satisfies both equations.
y=3\times \frac{\sqrt{39}-3}{10}+1,x=\frac{\sqrt{39}-3}{10}\text{ or }y=3\times \frac{-\sqrt{39}-3}{10}+1,x=\frac{-\sqrt{39}-3}{10}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}