Solve for y, x, c, d
x=5
y=3
c=-10
d=28
Share
Copied to clipboard
3=5^{2}-10\times 5+d
Consider the third equation. Insert the known values of variables into the equation.
3=25-10\times 5+d
Calculate 5 to the power of 2 and get 25.
3=25-50+d
Multiply -10 and 5 to get -50.
3=-25+d
Subtract 50 from 25 to get -25.
-25+d=3
Swap sides so that all variable terms are on the left hand side.
d=3+25
Add 25 to both sides.
d=28
Add 3 and 25 to get 28.
y=3 x=5 c=-10 d=28
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}