Solve for y, x
x=\frac{-6\sqrt{6}-8}{19}\approx -1.194575708\text{, }y=\frac{3-12\sqrt{6}}{19}\approx -1.389151416
x=\frac{6\sqrt{6}-8}{19}\approx 0.352470445\text{, }y=\frac{12\sqrt{6}+3}{19}\approx 1.70494089
Graph
Share
Copied to clipboard
y-2x=1
Consider the first equation. Subtract 2x from both sides.
3x^{2}+4y^{2}=12
Consider the second equation. Multiply both sides of the equation by 12, the least common multiple of 4,3.
y-2x=1,3x^{2}+4y^{2}=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-2x=1
Solve y-2x=1 for y by isolating y on the left hand side of the equal sign.
y=2x+1
Subtract -2x from both sides of the equation.
3x^{2}+4\left(2x+1\right)^{2}=12
Substitute 2x+1 for y in the other equation, 3x^{2}+4y^{2}=12.
3x^{2}+4\left(4x^{2}+4x+1\right)=12
Square 2x+1.
3x^{2}+16x^{2}+16x+4=12
Multiply 4 times 4x^{2}+4x+1.
19x^{2}+16x+4=12
Add 3x^{2} to 16x^{2}.
19x^{2}+16x-8=0
Subtract 12 from both sides of the equation.
x=\frac{-16±\sqrt{16^{2}-4\times 19\left(-8\right)}}{2\times 19}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3+4\times 2^{2} for a, 4\times 1\times 2\times 2 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 19\left(-8\right)}}{2\times 19}
Square 4\times 1\times 2\times 2.
x=\frac{-16±\sqrt{256-76\left(-8\right)}}{2\times 19}
Multiply -4 times 3+4\times 2^{2}.
x=\frac{-16±\sqrt{256+608}}{2\times 19}
Multiply -76 times -8.
x=\frac{-16±\sqrt{864}}{2\times 19}
Add 256 to 608.
x=\frac{-16±12\sqrt{6}}{2\times 19}
Take the square root of 864.
x=\frac{-16±12\sqrt{6}}{38}
Multiply 2 times 3+4\times 2^{2}.
x=\frac{12\sqrt{6}-16}{38}
Now solve the equation x=\frac{-16±12\sqrt{6}}{38} when ± is plus. Add -16 to 12\sqrt{6}.
x=\frac{6\sqrt{6}-8}{19}
Divide -16+12\sqrt{6} by 38.
x=\frac{-12\sqrt{6}-16}{38}
Now solve the equation x=\frac{-16±12\sqrt{6}}{38} when ± is minus. Subtract 12\sqrt{6} from -16.
x=\frac{-6\sqrt{6}-8}{19}
Divide -16-12\sqrt{6} by 38.
y=2\times \frac{6\sqrt{6}-8}{19}+1
Both solutions for x are the same: \frac{6\sqrt{6}-8}{19}. Substitute \frac{6\sqrt{6}-8}{19} for x in the equation y=2x+1 and solve to find the corresponding solution for y that satisfies both equations.
y=2\times \frac{-6\sqrt{6}-8}{19}+1
Now substitute \frac{-8-6\sqrt{6}}{19} for x in the equation y=2x+1 and solve to find the corresponding solution for y that satisfies both equations.
y=2\times \frac{6\sqrt{6}-8}{19}+1,x=\frac{6\sqrt{6}-8}{19}\text{ or }y=2\times \frac{-6\sqrt{6}-8}{19}+1,x=\frac{-6\sqrt{6}-8}{19}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}