Skip to main content
Solve for x, y
Tick mark Image
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

y\times 4k=\left(-\frac{3}{4k}\right)x\times 4k
Consider the first equation. Multiply both sides of the equation by 4k.
y\times 4k=\frac{-3x}{4k}\times 4k
Express \left(-\frac{3}{4k}\right)x as a single fraction.
y\times 4k=\frac{-3x\times 4}{4k}k
Express \frac{-3x}{4k}\times 4 as a single fraction.
y\times 4k=\frac{-3x}{k}k
Cancel out 4 in both numerator and denominator.
y\times 4k=\frac{-3xk}{k}
Express \frac{-3x}{k}k as a single fraction.
y\times 4k=-3x
Cancel out k in both numerator and denominator.
y\times 4k+3x=0
Add 3x to both sides.
4ky+3x=0,3x^{2}+4y^{2}=18
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4ky+3x=0
Solve 4ky+3x=0 for y by isolating y on the left hand side of the equal sign.
4ky=-3x
Subtract 3x from both sides of the equation.
y=\left(-\frac{3}{4k}\right)x
Divide both sides by 4k.
3x^{2}+4\left(\left(-\frac{3}{4k}\right)x\right)^{2}=18
Substitute \left(-\frac{3}{4k}\right)x for y in the other equation, 3x^{2}+4y^{2}=18.
3x^{2}+4\left(-\frac{3}{4k}\right)^{2}x^{2}=18
Square \left(-\frac{3}{4k}\right)x.
\left(3+4\left(-\frac{3}{4k}\right)^{2}\right)x^{2}=18
Add 3x^{2} to 4\left(-\frac{3}{4k}\right)^{2}x^{2}.
\left(3+4\left(-\frac{3}{4k}\right)^{2}\right)x^{2}-18=0
Subtract 18 from both sides of the equation.
x=\frac{0±\sqrt{0^{2}-4\left(3+4\left(-\frac{3}{4k}\right)^{2}\right)\left(-18\right)}}{2\left(3+4\left(-\frac{3}{4k}\right)^{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3+4\left(-\frac{3}{4k}\right)^{2} for a, 4\times 0\times 2\left(-\frac{3}{4k}\right) for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(3+4\left(-\frac{3}{4k}\right)^{2}\right)\left(-18\right)}}{2\left(3+4\left(-\frac{3}{4k}\right)^{2}\right)}
Square 4\times 0\times 2\left(-\frac{3}{4k}\right).
x=\frac{0±\sqrt{\left(-12-\frac{9}{k^{2}}\right)\left(-18\right)}}{2\left(3+4\left(-\frac{3}{4k}\right)^{2}\right)}
Multiply -4 times 3+4\left(-\frac{3}{4k}\right)^{2}.
x=\frac{0±\sqrt{216+\frac{162}{k^{2}}}}{2\left(3+4\left(-\frac{3}{4k}\right)^{2}\right)}
Multiply -12-\frac{9}{k^{2}} times -18.
x=\frac{0±\frac{3\sqrt{24k^{2}+18}}{|k|}}{2\left(3+4\left(-\frac{3}{4k}\right)^{2}\right)}
Take the square root of 216+\frac{162}{k^{2}}.
x=\frac{0±\frac{3\sqrt{24k^{2}+18}}{|k|}}{6+\frac{9}{2k^{2}}}
Multiply 2 times 3+4\left(-\frac{3}{4k}\right)^{2}.
x=\frac{12k^{2}}{|k|\sqrt{24k^{2}+18}}
Now solve the equation x=\frac{0±\frac{3\sqrt{24k^{2}+18}}{|k|}}{6+\frac{9}{2k^{2}}} when ± is plus.
x=-\frac{12k^{2}}{|k|\sqrt{24k^{2}+18}}
Now solve the equation x=\frac{0±\frac{3\sqrt{24k^{2}+18}}{|k|}}{6+\frac{9}{2k^{2}}} when ± is minus.
y=\left(-\frac{3}{4k}\right)\times \frac{12k^{2}}{|k|\sqrt{24k^{2}+18}}
There are two solutions for x: \frac{12k^{2}}{|k|\sqrt{24k^{2}+18}} and -\frac{12k^{2}}{|k|\sqrt{24k^{2}+18}}. Substitute \frac{12k^{2}}{|k|\sqrt{24k^{2}+18}} for x in the equation y=\left(-\frac{3}{4k}\right)x to find the corresponding solution for y that satisfies both equations.
y=\left(-\frac{3}{4k}\right)\left(-\frac{12k^{2}}{|k|\sqrt{24k^{2}+18}}\right)
Now substitute -\frac{12k^{2}}{|k|\sqrt{24k^{2}+18}} for x in the equation y=\left(-\frac{3}{4k}\right)x and solve to find the corresponding solution for y that satisfies both equations.
y=\left(-\frac{3}{4k}\right)\times \frac{12k^{2}}{|k|\sqrt{24k^{2}+18}},x=\frac{12k^{2}}{|k|\sqrt{24k^{2}+18}}\text{ or }y=\left(-\frac{3}{4k}\right)\left(-\frac{12k^{2}}{|k|\sqrt{24k^{2}+18}}\right),x=-\frac{12k^{2}}{|k|\sqrt{24k^{2}+18}}
The system is now solved.