Solve for x, y
x=2\sqrt{\frac{6}{4k^{2}+3}}k\text{, }y=-\frac{3\sqrt{\frac{6}{4k^{2}+3}}}{2}
x=-2\sqrt{\frac{6}{4k^{2}+3}}k\text{, }y=\frac{3\sqrt{\frac{6}{4k^{2}+3}}}{2}\text{, }k\neq 0
Solve for x, y (complex solution)
x=-2\sqrt{6}\left(4k^{2}+3\right)^{-\frac{1}{2}}k\text{, }y=\frac{3\sqrt{6}\left(4k^{2}+3\right)^{-\frac{1}{2}}}{2}
x=2\sqrt{6}\left(4k^{2}+3\right)^{-\frac{1}{2}}k\text{, }y=-\frac{3\sqrt{6}\left(4k^{2}+3\right)^{-\frac{1}{2}}}{2}\text{, }k\neq -\frac{\sqrt{3}i}{2}\text{ and }k\neq \frac{\sqrt{3}i}{2}\text{ and }k\neq 0
Graph
Share
Copied to clipboard
y\times 4k=\left(-\frac{3}{4k}\right)x\times 4k
Consider the first equation. Multiply both sides of the equation by 4k.
y\times 4k=\frac{-3x}{4k}\times 4k
Express \left(-\frac{3}{4k}\right)x as a single fraction.
y\times 4k=\frac{-3x\times 4}{4k}k
Express \frac{-3x}{4k}\times 4 as a single fraction.
y\times 4k=\frac{-3x}{k}k
Cancel out 4 in both numerator and denominator.
y\times 4k=\frac{-3xk}{k}
Express \frac{-3x}{k}k as a single fraction.
y\times 4k=-3x
Cancel out k in both numerator and denominator.
y\times 4k+3x=0
Add 3x to both sides.
4ky+3x=0,3x^{2}+4y^{2}=18
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4ky+3x=0
Solve 4ky+3x=0 for y by isolating y on the left hand side of the equal sign.
4ky=-3x
Subtract 3x from both sides of the equation.
y=\left(-\frac{3}{4k}\right)x
Divide both sides by 4k.
3x^{2}+4\left(\left(-\frac{3}{4k}\right)x\right)^{2}=18
Substitute \left(-\frac{3}{4k}\right)x for y in the other equation, 3x^{2}+4y^{2}=18.
3x^{2}+4\left(-\frac{3}{4k}\right)^{2}x^{2}=18
Square \left(-\frac{3}{4k}\right)x.
\left(3+4\left(-\frac{3}{4k}\right)^{2}\right)x^{2}=18
Add 3x^{2} to 4\left(-\frac{3}{4k}\right)^{2}x^{2}.
\left(3+4\left(-\frac{3}{4k}\right)^{2}\right)x^{2}-18=0
Subtract 18 from both sides of the equation.
x=\frac{0±\sqrt{0^{2}-4\left(3+4\left(-\frac{3}{4k}\right)^{2}\right)\left(-18\right)}}{2\left(3+4\left(-\frac{3}{4k}\right)^{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3+4\left(-\frac{3}{4k}\right)^{2} for a, 4\times 0\times 2\left(-\frac{3}{4k}\right) for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(3+4\left(-\frac{3}{4k}\right)^{2}\right)\left(-18\right)}}{2\left(3+4\left(-\frac{3}{4k}\right)^{2}\right)}
Square 4\times 0\times 2\left(-\frac{3}{4k}\right).
x=\frac{0±\sqrt{\left(-12-\frac{9}{k^{2}}\right)\left(-18\right)}}{2\left(3+4\left(-\frac{3}{4k}\right)^{2}\right)}
Multiply -4 times 3+4\left(-\frac{3}{4k}\right)^{2}.
x=\frac{0±\sqrt{216+\frac{162}{k^{2}}}}{2\left(3+4\left(-\frac{3}{4k}\right)^{2}\right)}
Multiply -12-\frac{9}{k^{2}} times -18.
x=\frac{0±\frac{3\sqrt{24k^{2}+18}}{|k|}}{2\left(3+4\left(-\frac{3}{4k}\right)^{2}\right)}
Take the square root of 216+\frac{162}{k^{2}}.
x=\frac{0±\frac{3\sqrt{24k^{2}+18}}{|k|}}{6+\frac{9}{2k^{2}}}
Multiply 2 times 3+4\left(-\frac{3}{4k}\right)^{2}.
x=\frac{12k^{2}}{|k|\sqrt{24k^{2}+18}}
Now solve the equation x=\frac{0±\frac{3\sqrt{24k^{2}+18}}{|k|}}{6+\frac{9}{2k^{2}}} when ± is plus.
x=-\frac{12k^{2}}{|k|\sqrt{24k^{2}+18}}
Now solve the equation x=\frac{0±\frac{3\sqrt{24k^{2}+18}}{|k|}}{6+\frac{9}{2k^{2}}} when ± is minus.
y=\left(-\frac{3}{4k}\right)\times \frac{12k^{2}}{|k|\sqrt{24k^{2}+18}}
There are two solutions for x: \frac{12k^{2}}{|k|\sqrt{24k^{2}+18}} and -\frac{12k^{2}}{|k|\sqrt{24k^{2}+18}}. Substitute \frac{12k^{2}}{|k|\sqrt{24k^{2}+18}} for x in the equation y=\left(-\frac{3}{4k}\right)x to find the corresponding solution for y that satisfies both equations.
y=\left(-\frac{3}{4k}\right)\left(-\frac{12k^{2}}{|k|\sqrt{24k^{2}+18}}\right)
Now substitute -\frac{12k^{2}}{|k|\sqrt{24k^{2}+18}} for x in the equation y=\left(-\frac{3}{4k}\right)x and solve to find the corresponding solution for y that satisfies both equations.
y=\left(-\frac{3}{4k}\right)\times \frac{12k^{2}}{|k|\sqrt{24k^{2}+18}},x=\frac{12k^{2}}{|k|\sqrt{24k^{2}+18}}\text{ or }y=\left(-\frac{3}{4k}\right)\left(-\frac{12k^{2}}{|k|\sqrt{24k^{2}+18}}\right),x=-\frac{12k^{2}}{|k|\sqrt{24k^{2}+18}}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}