Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-\sqrt{3}x=-\frac{\sqrt{3}}{2}
Consider the first equation. Subtract \sqrt{3}x from both sides.
2y-2\sqrt{3}x=-\sqrt{3}
Multiply both sides of the equation by 2.
4x^{2}+y^{2}=4
Consider the second equation. Multiply both sides of the equation by 4.
2y+\left(-2\sqrt{3}\right)x=-\sqrt{3},4x^{2}+y^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2y+\left(-2\sqrt{3}\right)x=-\sqrt{3}
Solve 2y+\left(-2\sqrt{3}\right)x=-\sqrt{3} for y by isolating y on the left hand side of the equal sign.
2y=2\sqrt{3}x-\sqrt{3}
Subtract \left(-2\sqrt{3}\right)x from both sides of the equation.
y=\sqrt{3}x-\frac{\sqrt{3}}{2}
Divide both sides by 2.
4x^{2}+\left(\sqrt{3}x-\frac{\sqrt{3}}{2}\right)^{2}=4
Substitute \sqrt{3}x-\frac{\sqrt{3}}{2} for y in the other equation, 4x^{2}+y^{2}=4.
4x^{2}+\left(\sqrt{3}\right)^{2}x^{2}+2\sqrt{3}\left(-\frac{\sqrt{3}}{2}\right)x+\left(-\frac{\sqrt{3}}{2}\right)^{2}=4
Square \sqrt{3}x-\frac{\sqrt{3}}{2}.
\left(\left(\sqrt{3}\right)^{2}+4\right)x^{2}+2\sqrt{3}\left(-\frac{\sqrt{3}}{2}\right)x+\left(-\frac{\sqrt{3}}{2}\right)^{2}=4
Add 4x^{2} to \left(\sqrt{3}\right)^{2}x^{2}.
\left(\left(\sqrt{3}\right)^{2}+4\right)x^{2}+2\sqrt{3}\left(-\frac{\sqrt{3}}{2}\right)x+\left(-\frac{\sqrt{3}}{2}\right)^{2}-4=0
Subtract 4 from both sides of the equation.
x=\frac{-2\sqrt{3}\left(-\frac{\sqrt{3}}{2}\right)±\sqrt{\left(2\sqrt{3}\left(-\frac{\sqrt{3}}{2}\right)\right)^{2}-4\left(\left(\sqrt{3}\right)^{2}+4\right)\left(-\frac{13}{4}\right)}}{2\left(\left(\sqrt{3}\right)^{2}+4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4+1\left(\sqrt{3}\right)^{2} for a, 1\times 2\sqrt{3}\left(-\frac{\sqrt{3}}{2}\right) for b, and -\frac{13}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2\sqrt{3}\left(-\frac{\sqrt{3}}{2}\right)±\sqrt{9-4\left(\left(\sqrt{3}\right)^{2}+4\right)\left(-\frac{13}{4}\right)}}{2\left(\left(\sqrt{3}\right)^{2}+4\right)}
Square 1\times 2\sqrt{3}\left(-\frac{\sqrt{3}}{2}\right).
x=\frac{-2\sqrt{3}\left(-\frac{\sqrt{3}}{2}\right)±\sqrt{9-28\left(-\frac{13}{4}\right)}}{2\left(\left(\sqrt{3}\right)^{2}+4\right)}
Multiply -4 times 4+1\left(\sqrt{3}\right)^{2}.
x=\frac{-2\sqrt{3}\left(-\frac{\sqrt{3}}{2}\right)±\sqrt{9+91}}{2\left(\left(\sqrt{3}\right)^{2}+4\right)}
Multiply -28 times -\frac{13}{4}.
x=\frac{-2\sqrt{3}\left(-\frac{\sqrt{3}}{2}\right)±\sqrt{100}}{2\left(\left(\sqrt{3}\right)^{2}+4\right)}
Add 9 to 91.
x=\frac{-2\sqrt{3}\left(-\frac{\sqrt{3}}{2}\right)±10}{2\left(\left(\sqrt{3}\right)^{2}+4\right)}
Take the square root of 100.
x=\frac{3±10}{2\left(\left(\sqrt{3}\right)^{2}+4\right)}
The opposite of 1\times 2\sqrt{3}\left(-\frac{\sqrt{3}}{2}\right) is 3.
x=\frac{3±10}{14}
Multiply 2 times 4+1\left(\sqrt{3}\right)^{2}.
x=\frac{13}{14}
Now solve the equation x=\frac{3±10}{14} when ± is plus. Add 3 to 10.
x=-\frac{7}{14}
Now solve the equation x=\frac{3±10}{14} when ± is minus. Subtract 10 from 3.
x=-\frac{1}{2}
Reduce the fraction \frac{-7}{14} to lowest terms by extracting and canceling out 7.
y=\sqrt{3}\times \frac{13}{14}-\frac{\sqrt{3}}{2}
There are two solutions for x: \frac{13}{14} and -\frac{1}{2}. Substitute \frac{13}{14} for x in the equation y=\sqrt{3}x-\frac{\sqrt{3}}{2} to find the corresponding solution for y that satisfies both equations.
y=\frac{13\sqrt{3}}{14}-\frac{\sqrt{3}}{2}
Multiply \sqrt{3} times \frac{13}{14}.
y=\sqrt{3}\left(-\frac{1}{2}\right)-\frac{\sqrt{3}}{2}
Now substitute -\frac{1}{2} for x in the equation y=\sqrt{3}x-\frac{\sqrt{3}}{2} and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{-\sqrt{3}-\sqrt{3}}{2}
Multiply \sqrt{3} times -\frac{1}{2}.
y=\frac{13\sqrt{3}}{14}-\frac{\sqrt{3}}{2},x=\frac{13}{14}\text{ or }y=\frac{-\sqrt{3}-\sqrt{3}}{2},x=-\frac{1}{2}
The system is now solved.