Solve for y, x, z
\left\{\begin{matrix}\\x=3\left(-\arcsin(\frac{2^{\frac{2}{3}}\sqrt[3]{\frac{z}{\pi }}}{2})+2\pi n_{1}+\pi \right)\text{, }n_{1}\in \mathrm{Z}\text{, }y=\left(\sin(\frac{x}{3})\right)^{3}\text{, }z\in \begin{bmatrix}0,2\pi \end{bmatrix}\text{; }x=3\left(\arcsin(\frac{2^{\frac{2}{3}}\sqrt[3]{\frac{z}{\pi }}}{2})+\pi n_{4}\right)\text{, }n_{4}\in \mathrm{Z}\text{, }y=\left(\sin(\frac{x}{3})\right)^{3}\text{, }z\in \begin{bmatrix}0,2\pi \end{bmatrix}\text{, }&\text{unconditionally}\\x=3\left(-\arcsin(\frac{2^{\frac{2}{3}}\sqrt[3]{\frac{z}{\pi }}}{2})+2\pi n_{2}\right)\text{, }n_{2}\in \mathrm{Z}\text{, }\exists n_{3}\in \mathrm{Z}\text{ : }\left(z\geq -2\pi \left(\sin(2\pi \left(n_{3}+1\right))\right)^{3}\text{ and }n_{2}=n_{3}+1\right)\text{, }y=\left(\sin(\frac{x}{3})\right)^{3}\text{, }z\in \begin{bmatrix}0,2\pi \end{bmatrix}\text{, }&\exists n_{3}\in \mathrm{Z}\text{ : }z\geq -2\pi \left(\sin(2\pi \left(n_{3}+1\right))\right)^{3}\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}