Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-\frac{x}{20}=0
Consider the first equation. Subtract \frac{x}{20} from both sides.
20y-x=0
Multiply both sides of the equation by 20.
y=\frac{8}{3}+\frac{1}{30}x
Consider the second equation. Use the distributive property to multiply 80+x by \frac{1}{30}.
y-\frac{1}{30}x=\frac{8}{3}
Subtract \frac{1}{30}x from both sides.
20y-x=0,y-\frac{1}{30}x=\frac{8}{3}
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
20y-x=0
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
20y=x
Add x to both sides of the equation.
y=\frac{1}{20}x
Divide both sides by 20.
\frac{1}{20}x-\frac{1}{30}x=\frac{8}{3}
Substitute \frac{x}{20} for y in the other equation, y-\frac{1}{30}x=\frac{8}{3}.
\frac{1}{60}x=\frac{8}{3}
Add \frac{x}{20} to -\frac{x}{30}.
x=160
Multiply both sides by 60.
y=\frac{1}{20}\times 160
Substitute 160 for x in y=\frac{1}{20}x. Because the resulting equation contains only one variable, you can solve for y directly.
y=8
Multiply \frac{1}{20} times 160.
y=8,x=160
The system is now solved.
y-\frac{x}{20}=0
Consider the first equation. Subtract \frac{x}{20} from both sides.
20y-x=0
Multiply both sides of the equation by 20.
y=\frac{8}{3}+\frac{1}{30}x
Consider the second equation. Use the distributive property to multiply 80+x by \frac{1}{30}.
y-\frac{1}{30}x=\frac{8}{3}
Subtract \frac{1}{30}x from both sides.
20y-x=0,y-\frac{1}{30}x=\frac{8}{3}
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}20&-1\\1&-\frac{1}{30}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\\frac{8}{3}\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}20&-1\\1&-\frac{1}{30}\end{matrix}\right))\left(\begin{matrix}20&-1\\1&-\frac{1}{30}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}20&-1\\1&-\frac{1}{30}\end{matrix}\right))\left(\begin{matrix}0\\\frac{8}{3}\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}20&-1\\1&-\frac{1}{30}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}20&-1\\1&-\frac{1}{30}\end{matrix}\right))\left(\begin{matrix}0\\\frac{8}{3}\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}20&-1\\1&-\frac{1}{30}\end{matrix}\right))\left(\begin{matrix}0\\\frac{8}{3}\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{30}}{20\left(-\frac{1}{30}\right)-\left(-1\right)}&-\frac{-1}{20\left(-\frac{1}{30}\right)-\left(-1\right)}\\-\frac{1}{20\left(-\frac{1}{30}\right)-\left(-1\right)}&\frac{20}{20\left(-\frac{1}{30}\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}0\\\frac{8}{3}\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}&3\\-3&60\end{matrix}\right)\left(\begin{matrix}0\\\frac{8}{3}\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\times \frac{8}{3}\\60\times \frac{8}{3}\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}8\\160\end{matrix}\right)
Do the arithmetic.
y=8,x=160
Extract the matrix elements y and x.
y-\frac{x}{20}=0
Consider the first equation. Subtract \frac{x}{20} from both sides.
20y-x=0
Multiply both sides of the equation by 20.
y=\frac{8}{3}+\frac{1}{30}x
Consider the second equation. Use the distributive property to multiply 80+x by \frac{1}{30}.
y-\frac{1}{30}x=\frac{8}{3}
Subtract \frac{1}{30}x from both sides.
20y-x=0,y-\frac{1}{30}x=\frac{8}{3}
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
20y-x=0,20y+20\left(-\frac{1}{30}\right)x=20\times \frac{8}{3}
To make 20y and y equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 20.
20y-x=0,20y-\frac{2}{3}x=\frac{160}{3}
Simplify.
20y-20y-x+\frac{2}{3}x=-\frac{160}{3}
Subtract 20y-\frac{2}{3}x=\frac{160}{3} from 20y-x=0 by subtracting like terms on each side of the equal sign.
-x+\frac{2}{3}x=-\frac{160}{3}
Add 20y to -20y. Terms 20y and -20y cancel out, leaving an equation with only one variable that can be solved.
-\frac{1}{3}x=-\frac{160}{3}
Add -x to \frac{2x}{3}.
x=160
Multiply both sides by -3.
y-\frac{1}{30}\times 160=\frac{8}{3}
Substitute 160 for x in y-\frac{1}{30}x=\frac{8}{3}. Because the resulting equation contains only one variable, you can solve for y directly.
y-\frac{16}{3}=\frac{8}{3}
Multiply -\frac{1}{30} times 160.
y=8
Add \frac{16}{3} to both sides of the equation.
y=8,x=160
The system is now solved.