Solve for y, x
x = \frac{52024}{53} = 981\frac{31}{53} \approx 981.58490566
y = \frac{168940}{53} = 3187\frac{29}{53} \approx 3187.547169811
Graph
Share
Copied to clipboard
y=-\frac{2}{7}x+3468
Consider the first equation. Fraction \frac{2}{-7} can be rewritten as -\frac{2}{7} by extracting the negative sign.
-\frac{2}{7}x+3468-\frac{7}{2}x=-248
Substitute -\frac{2x}{7}+3468 for y in the other equation, y-\frac{7}{2}x=-248.
-\frac{53}{14}x+3468=-248
Add -\frac{2x}{7} to -\frac{7x}{2}.
-\frac{53}{14}x=-3716
Subtract 3468 from both sides of the equation.
x=\frac{52024}{53}
Divide both sides of the equation by -\frac{53}{14}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=-\frac{2}{7}\times \frac{52024}{53}+3468
Substitute \frac{52024}{53} for x in y=-\frac{2}{7}x+3468. Because the resulting equation contains only one variable, you can solve for y directly.
y=-\frac{14864}{53}+3468
Multiply -\frac{2}{7} times \frac{52024}{53} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{168940}{53}
Add 3468 to -\frac{14864}{53}.
y=\frac{168940}{53},x=\frac{52024}{53}
The system is now solved.
y=-\frac{2}{7}x+3468
Consider the first equation. Fraction \frac{2}{-7} can be rewritten as -\frac{2}{7} by extracting the negative sign.
y+\frac{2}{7}x=3468
Add \frac{2}{7}x to both sides.
y-\frac{7}{2}x=-248
Consider the second equation. Subtract \frac{7}{2}x from both sides.
y+\frac{2}{7}x=3468,y-\frac{7}{2}x=-248
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&\frac{2}{7}\\1&-\frac{7}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3468\\-248\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&\frac{2}{7}\\1&-\frac{7}{2}\end{matrix}\right))\left(\begin{matrix}1&\frac{2}{7}\\1&-\frac{7}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{2}{7}\\1&-\frac{7}{2}\end{matrix}\right))\left(\begin{matrix}3468\\-248\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&\frac{2}{7}\\1&-\frac{7}{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{2}{7}\\1&-\frac{7}{2}\end{matrix}\right))\left(\begin{matrix}3468\\-248\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{2}{7}\\1&-\frac{7}{2}\end{matrix}\right))\left(\begin{matrix}3468\\-248\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{7}{2}}{-\frac{7}{2}-\frac{2}{7}}&-\frac{\frac{2}{7}}{-\frac{7}{2}-\frac{2}{7}}\\-\frac{1}{-\frac{7}{2}-\frac{2}{7}}&\frac{1}{-\frac{7}{2}-\frac{2}{7}}\end{matrix}\right)\left(\begin{matrix}3468\\-248\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{49}{53}&\frac{4}{53}\\\frac{14}{53}&-\frac{14}{53}\end{matrix}\right)\left(\begin{matrix}3468\\-248\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{49}{53}\times 3468+\frac{4}{53}\left(-248\right)\\\frac{14}{53}\times 3468-\frac{14}{53}\left(-248\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{168940}{53}\\\frac{52024}{53}\end{matrix}\right)
Do the arithmetic.
y=\frac{168940}{53},x=\frac{52024}{53}
Extract the matrix elements y and x.
y=-\frac{2}{7}x+3468
Consider the first equation. Fraction \frac{2}{-7} can be rewritten as -\frac{2}{7} by extracting the negative sign.
y+\frac{2}{7}x=3468
Add \frac{2}{7}x to both sides.
y-\frac{7}{2}x=-248
Consider the second equation. Subtract \frac{7}{2}x from both sides.
y+\frac{2}{7}x=3468,y-\frac{7}{2}x=-248
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
y-y+\frac{2}{7}x+\frac{7}{2}x=3468+248
Subtract y-\frac{7}{2}x=-248 from y+\frac{2}{7}x=3468 by subtracting like terms on each side of the equal sign.
\frac{2}{7}x+\frac{7}{2}x=3468+248
Add y to -y. Terms y and -y cancel out, leaving an equation with only one variable that can be solved.
\frac{53}{14}x=3468+248
Add \frac{2x}{7} to \frac{7x}{2}.
\frac{53}{14}x=3716
Add 3468 to 248.
x=\frac{52024}{53}
Divide both sides of the equation by \frac{53}{14}, which is the same as multiplying both sides by the reciprocal of the fraction.
y-\frac{7}{2}\times \frac{52024}{53}=-248
Substitute \frac{52024}{53} for x in y-\frac{7}{2}x=-248. Because the resulting equation contains only one variable, you can solve for y directly.
y-\frac{182084}{53}=-248
Multiply -\frac{7}{2} times \frac{52024}{53} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{168940}{53}
Add \frac{182084}{53} to both sides of the equation.
y=\frac{168940}{53},x=\frac{52024}{53}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}