Skip to main content
Solve for x_2, x_3, x_1
Tick mark Image

Similar Problems from Web Search

Share

x_{2}=8+4x_{3}
Solve x_{2}-4x_{3}=8 for x_{2}.
2x_{1}-3\left(8+4x_{3}\right)+2x_{3}=1 4x_{1}-3\left(8+4x_{3}\right)+12x_{3}=1
Substitute 8+4x_{3} for x_{2} in the second and third equation.
x_{3}=\frac{1}{5}x_{1}-\frac{5}{2} x_{1}=\frac{25}{4}
Solve these equations for x_{3} and x_{1} respectively.
x_{3}=\frac{1}{5}\times \frac{25}{4}-\frac{5}{2}
Substitute \frac{25}{4} for x_{1} in the equation x_{3}=\frac{1}{5}x_{1}-\frac{5}{2}.
x_{3}=-\frac{5}{4}
Calculate x_{3} from x_{3}=\frac{1}{5}\times \frac{25}{4}-\frac{5}{2}.
x_{2}=8+4\left(-\frac{5}{4}\right)
Substitute -\frac{5}{4} for x_{3} in the equation x_{2}=8+4x_{3}.
x_{2}=3
Calculate x_{2} from x_{2}=8+4\left(-\frac{5}{4}\right).
x_{2}=3 x_{3}=-\frac{5}{4} x_{1}=\frac{25}{4}
The system is now solved.