Solve for x_2, x_3, x_1
x_{2}=3
x_{3} = -\frac{5}{4} = -1\frac{1}{4} = -1.25
x_{1} = \frac{25}{4} = 6\frac{1}{4} = 6.25
Share
Copied to clipboard
x_{2}=8+4x_{3}
Solve x_{2}-4x_{3}=8 for x_{2}.
2x_{1}-3\left(8+4x_{3}\right)+2x_{3}=1 4x_{1}-3\left(8+4x_{3}\right)+12x_{3}=1
Substitute 8+4x_{3} for x_{2} in the second and third equation.
x_{3}=\frac{1}{5}x_{1}-\frac{5}{2} x_{1}=\frac{25}{4}
Solve these equations for x_{3} and x_{1} respectively.
x_{3}=\frac{1}{5}\times \frac{25}{4}-\frac{5}{2}
Substitute \frac{25}{4} for x_{1} in the equation x_{3}=\frac{1}{5}x_{1}-\frac{5}{2}.
x_{3}=-\frac{5}{4}
Calculate x_{3} from x_{3}=\frac{1}{5}\times \frac{25}{4}-\frac{5}{2}.
x_{2}=8+4\left(-\frac{5}{4}\right)
Substitute -\frac{5}{4} for x_{3} in the equation x_{2}=8+4x_{3}.
x_{2}=3
Calculate x_{2} from x_{2}=8+4\left(-\frac{5}{4}\right).
x_{2}=3 x_{3}=-\frac{5}{4} x_{1}=\frac{25}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}