Solve for x_1, x_2
x_{1}=\frac{4\left(a+1\right)}{3}
x_{2}=\frac{a+4}{3}
Share
Copied to clipboard
\frac{3}{4}x_{1}-1=a,x_{1}-x_{2}=a
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{3}{4}x_{1}-1=a
Pick one of the two equations which is more simple to solve for x_{1} by isolating x_{1} on the left hand side of the equal sign.
\frac{3}{4}x_{1}=a+1
Add 1 to both sides of the equation.
x_{1}=\frac{4a+4}{3}
Divide both sides of the equation by \frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
\frac{4a+4}{3}-x_{2}=a
Substitute \frac{4a+4}{3} for x_{1} in the other equation, x_{1}-x_{2}=a.
-x_{2}=\frac{-a-4}{3}
Subtract \frac{4+4a}{3} from both sides of the equation.
x_{2}=\frac{a+4}{3}
Divide both sides by -1.
x_{1}=\frac{4a+4}{3},x_{2}=\frac{a+4}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}