Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{1}=-x_{2}+x_{3}
Solve x_{1}+x_{2}-x_{3}=0 for x_{1}.
2\left(-x_{2}+x_{3}\right)-x_{2}-x_{3}=2 4\left(-x_{2}+x_{3}\right)+x_{2}+x_{3}=6
Substitute -x_{2}+x_{3} for x_{1} in the second and third equation.
x_{2}=-\frac{2}{3}+\frac{1}{3}x_{3} x_{3}=\frac{6}{5}+\frac{3}{5}x_{2}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=\frac{6}{5}+\frac{3}{5}\left(-\frac{2}{3}+\frac{1}{3}x_{3}\right)
Substitute -\frac{2}{3}+\frac{1}{3}x_{3} for x_{2} in the equation x_{3}=\frac{6}{5}+\frac{3}{5}x_{2}.
x_{3}=1
Solve x_{3}=\frac{6}{5}+\frac{3}{5}\left(-\frac{2}{3}+\frac{1}{3}x_{3}\right) for x_{3}.
x_{2}=-\frac{2}{3}+\frac{1}{3}\times 1
Substitute 1 for x_{3} in the equation x_{2}=-\frac{2}{3}+\frac{1}{3}x_{3}.
x_{2}=-\frac{1}{3}
Calculate x_{2} from x_{2}=-\frac{2}{3}+\frac{1}{3}\times 1.
x_{1}=-\left(-\frac{1}{3}\right)+1
Substitute -\frac{1}{3} for x_{2} and 1 for x_{3} in the equation x_{1}=-x_{2}+x_{3}.
x_{1}=\frac{4}{3}
Calculate x_{1} from x_{1}=-\left(-\frac{1}{3}\right)+1.
x_{1}=\frac{4}{3} x_{2}=-\frac{1}{3} x_{3}=1
The system is now solved.