Solve for x_1, x_2, x_3
x_{1}=-4
x_{2}=\frac{1}{7}\approx 0.142857143
x_{3} = \frac{16}{7} = 2\frac{2}{7} \approx 2.285714286
Share
Copied to clipboard
x_{1}=-3x_{2}-2x_{3}+1
Solve x_{1}+3x_{2}+2x_{3}=1 for x_{1}.
2\left(-3x_{2}-2x_{3}+1\right)+4x_{2}+5x_{3}=4 3\left(-3x_{2}-2x_{3}+1\right)+2x_{2}+6x_{3}=2
Substitute -3x_{2}-2x_{3}+1 for x_{1} in the second and third equation.
x_{3}=2+2x_{2} x_{2}=\frac{1}{7}
Solve these equations for x_{3} and x_{2} respectively.
x_{3}=2+2\times \frac{1}{7}
Substitute \frac{1}{7} for x_{2} in the equation x_{3}=2+2x_{2}.
x_{3}=\frac{16}{7}
Calculate x_{3} from x_{3}=2+2\times \frac{1}{7}.
x_{1}=-3\times \frac{1}{7}-2\times \frac{16}{7}+1
Substitute \frac{16}{7} for x_{3} and \frac{1}{7} for x_{2} in the equation x_{1}=-3x_{2}-2x_{3}+1.
x_{1}=-4
Calculate x_{1} from x_{1}=-3\times \frac{1}{7}-2\times \frac{16}{7}+1.
x_{1}=-4 x_{2}=\frac{1}{7} x_{3}=\frac{16}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}