Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-y=241,x+y=361
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=241
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=y+241
Add y to both sides of the equation.
y+241+y=361
Substitute y+241 for x in the other equation, x+y=361.
2y+241=361
Add y to y.
2y=120
Subtract 241 from both sides of the equation.
y=60
Divide both sides by 2.
x=60+241
Substitute 60 for y in x=y+241. Because the resulting equation contains only one variable, you can solve for x directly.
x=301
Add 241 to 60.
x=301,y=60
The system is now solved.
x-y=241,x+y=361
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}241\\361\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}241\\361\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}241\\361\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}241\\361\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}241\\361\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}241\\361\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 241+\frac{1}{2}\times 361\\-\frac{1}{2}\times 241+\frac{1}{2}\times 361\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}301\\60\end{matrix}\right)
Do the arithmetic.
x=301,y=60
Extract the matrix elements x and y.
x-y=241,x+y=361
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x-y-y=241-361
Subtract x+y=361 from x-y=241 by subtracting like terms on each side of the equal sign.
-y-y=241-361
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
-2y=241-361
Add -y to -y.
-2y=-120
Add 241 to -361.
y=60
Divide both sides by -2.
x+60=361
Substitute 60 for y in x+y=361. Because the resulting equation contains only one variable, you can solve for x directly.
x=301
Subtract 60 from both sides of the equation.
x=301,y=60
The system is now solved.