Solve for x, y (complex solution)
x=-\frac{\sqrt{398}i}{2}+10\approx 10-9.974968672i\text{, }y=-\frac{\sqrt{398}i}{2}-10\approx -10-9.974968672i
x=\frac{\sqrt{398}i}{2}+10\approx 10+9.974968672i\text{, }y=\frac{\sqrt{398}i}{2}-10\approx -10+9.974968672i
Graph
Share
Copied to clipboard
x-y=20
Solve x-y=20 for x by isolating x on the left hand side of the equal sign.
x=y+20
Subtract -y from both sides of the equation.
y^{2}+\left(y+20\right)^{2}=1
Substitute y+20 for x in the other equation, y^{2}+x^{2}=1.
y^{2}+y^{2}+40y+400=1
Square y+20.
2y^{2}+40y+400=1
Add y^{2} to y^{2}.
2y^{2}+40y+399=0
Subtract 1 from both sides of the equation.
y=\frac{-40±\sqrt{40^{2}-4\times 2\times 399}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 20\times 1\times 2 for b, and 399 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-40±\sqrt{1600-4\times 2\times 399}}{2\times 2}
Square 1\times 20\times 1\times 2.
y=\frac{-40±\sqrt{1600-8\times 399}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
y=\frac{-40±\sqrt{1600-3192}}{2\times 2}
Multiply -8 times 399.
y=\frac{-40±\sqrt{-1592}}{2\times 2}
Add 1600 to -3192.
y=\frac{-40±2\sqrt{398}i}{2\times 2}
Take the square root of -1592.
y=\frac{-40±2\sqrt{398}i}{4}
Multiply 2 times 1+1\times 1^{2}.
y=\frac{-40+2\sqrt{398}i}{4}
Now solve the equation y=\frac{-40±2\sqrt{398}i}{4} when ± is plus. Add -40 to 2i\sqrt{398}.
y=\frac{\sqrt{398}i}{2}-10
Divide -40+2i\sqrt{398} by 4.
y=\frac{-2\sqrt{398}i-40}{4}
Now solve the equation y=\frac{-40±2\sqrt{398}i}{4} when ± is minus. Subtract 2i\sqrt{398} from -40.
y=-\frac{\sqrt{398}i}{2}-10
Divide -40-2i\sqrt{398} by 4.
x=\frac{\sqrt{398}i}{2}-10+20
There are two solutions for y: -10+\frac{i\sqrt{398}}{2} and -10-\frac{i\sqrt{398}}{2}. Substitute -10+\frac{i\sqrt{398}}{2} for y in the equation x=y+20 to find the corresponding solution for x that satisfies both equations.
x=\frac{\sqrt{398}i}{2}+10
Add 1\left(-10+\frac{i\sqrt{398}}{2}\right) to 20.
x=-\frac{\sqrt{398}i}{2}-10+20
Now substitute -10-\frac{i\sqrt{398}}{2} for y in the equation x=y+20 and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{\sqrt{398}i}{2}+10
Add 1\left(-10-\frac{i\sqrt{398}}{2}\right) to 20.
x=\frac{\sqrt{398}i}{2}+10,y=\frac{\sqrt{398}i}{2}-10\text{ or }x=-\frac{\sqrt{398}i}{2}+10,y=-\frac{\sqrt{398}i}{2}-10
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}