Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-y=2,y^{2}+x^{2}=16
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=2
Solve x-y=2 for x by isolating x on the left hand side of the equal sign.
x=y+2
Subtract -y from both sides of the equation.
y^{2}+\left(y+2\right)^{2}=16
Substitute y+2 for x in the other equation, y^{2}+x^{2}=16.
y^{2}+y^{2}+4y+4=16
Square y+2.
2y^{2}+4y+4=16
Add y^{2} to y^{2}.
2y^{2}+4y-12=0
Subtract 16 from both sides of the equation.
y=\frac{-4±\sqrt{4^{2}-4\times 2\left(-12\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 2\times 1\times 2 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-4±\sqrt{16-4\times 2\left(-12\right)}}{2\times 2}
Square 1\times 2\times 1\times 2.
y=\frac{-4±\sqrt{16-8\left(-12\right)}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
y=\frac{-4±\sqrt{16+96}}{2\times 2}
Multiply -8 times -12.
y=\frac{-4±\sqrt{112}}{2\times 2}
Add 16 to 96.
y=\frac{-4±4\sqrt{7}}{2\times 2}
Take the square root of 112.
y=\frac{-4±4\sqrt{7}}{4}
Multiply 2 times 1+1\times 1^{2}.
y=\frac{4\sqrt{7}-4}{4}
Now solve the equation y=\frac{-4±4\sqrt{7}}{4} when ± is plus. Add -4 to 4\sqrt{7}.
y=\sqrt{7}-1
Divide -4+4\sqrt{7} by 4.
y=\frac{-4\sqrt{7}-4}{4}
Now solve the equation y=\frac{-4±4\sqrt{7}}{4} when ± is minus. Subtract 4\sqrt{7} from -4.
y=-\sqrt{7}-1
Divide -4-4\sqrt{7} by 4.
x=\sqrt{7}-1+2
There are two solutions for y: -1+\sqrt{7} and -1-\sqrt{7}. Substitute -1+\sqrt{7} for y in the equation x=y+2 to find the corresponding solution for x that satisfies both equations.
x=\sqrt{7}+1
Add 1\left(-1+\sqrt{7}\right) to 2.
x=-\sqrt{7}-1+2
Now substitute -1-\sqrt{7} for y in the equation x=y+2 and solve to find the corresponding solution for x that satisfies both equations.
x=1-\sqrt{7}
Add 1\left(-1-\sqrt{7}\right) to 2.
x=\sqrt{7}+1,y=\sqrt{7}-1\text{ or }x=1-\sqrt{7},y=-\sqrt{7}-1
The system is now solved.