Solve for x, y
x=11.153205285
y=0.778467595
Graph
Share
Copied to clipboard
x-y=10.37473769,x+y=11.93167288
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=10.37473769
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=y+10.37473769
Add y to both sides of the equation.
y+10.37473769+y=11.93167288
Substitute y+10.37473769 for x in the other equation, x+y=11.93167288.
2y+10.37473769=11.93167288
Add y to y.
2y=1.55693519
Subtract 10.37473769 from both sides of the equation.
y=0.778467595
Divide both sides by 2.
x=0.778467595+10.37473769
Substitute 0.778467595 for y in x=y+10.37473769. Because the resulting equation contains only one variable, you can solve for x directly.
x=11.153205285
Add 10.37473769 to 0.778467595 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=11.153205285,y=0.778467595
The system is now solved.
x-y=10.37473769,x+y=11.93167288
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10.37473769\\11.93167288\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}10.37473769\\11.93167288\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}10.37473769\\11.93167288\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}10.37473769\\11.93167288\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}10.37473769\\11.93167288\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}10.37473769\\11.93167288\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 10.37473769+\frac{1}{2}\times 11.93167288\\-\frac{1}{2}\times 10.37473769+\frac{1}{2}\times 11.93167288\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2230641057}{200000000}\\\frac{155693519}{200000000}\end{matrix}\right)
Do the arithmetic.
x=\frac{2230641057}{200000000},y=\frac{155693519}{200000000}
Extract the matrix elements x and y.
x-y=10.37473769,x+y=11.93167288
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x-y-y=10.37473769-11.93167288
Subtract x+y=11.93167288 from x-y=10.37473769 by subtracting like terms on each side of the equal sign.
-y-y=10.37473769-11.93167288
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
-2y=10.37473769-11.93167288
Add -y to -y.
-2y=-1.55693519
Add 10.37473769 to -11.93167288 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{155693519}{200000000}
Divide both sides by -2.
x+\frac{155693519}{200000000}=11.93167288
Substitute \frac{155693519}{200000000} for y in x+y=11.93167288. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{2230641057}{200000000}
Subtract \frac{155693519}{200000000} from both sides of the equation.
x=\frac{2230641057}{200000000},y=\frac{155693519}{200000000}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}