Solve for x, y
x=-\frac{3\sigma }{2}
y=-3\sigma -1
Graph
Share
Copied to clipboard
2x-2y=2-x+0-x
Consider the first equation. Multiply both sides of the equation by 2.
2x-2y=2-x-x
Add 2 and 0 to get 2.
2x-2y=2-2x
Combine -x and -x to get -2x.
2x-2y+2x=2
Add 2x to both sides.
4x-2y=2
Combine 2x and 2x to get 4x.
6x-6y=2\left(2-y\right)+3\sigma
Consider the second equation. Multiply both sides of the equation by 6, the least common multiple of 3,2.
6x-6y=4-2y+3\sigma
Use the distributive property to multiply 2 by 2-y.
6x-6y+2y=4+3\sigma
Add 2y to both sides.
6x-4y=4+3\sigma
Combine -6y and 2y to get -4y.
4x-2y=2,6x-4y=3\sigma +4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x-2y=2
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x=2y+2
Add 2y to both sides of the equation.
x=\frac{1}{4}\left(2y+2\right)
Divide both sides by 4.
x=\frac{1}{2}y+\frac{1}{2}
Multiply \frac{1}{4} times 2+2y.
6\left(\frac{1}{2}y+\frac{1}{2}\right)-4y=3\sigma +4
Substitute \frac{1+y}{2} for x in the other equation, 6x-4y=3\sigma +4.
3y+3-4y=3\sigma +4
Multiply 6 times \frac{1+y}{2}.
-y+3=3\sigma +4
Add 3y to -4y.
-y=3\sigma +1
Subtract 3 from both sides of the equation.
y=-3\sigma -1
Divide both sides by -1.
x=\frac{1}{2}\left(-3\sigma -1\right)+\frac{1}{2}
Substitute -1-3\sigma for y in x=\frac{1}{2}y+\frac{1}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-3\sigma -1+1}{2}
Multiply \frac{1}{2} times -1-3\sigma .
x=-\frac{3\sigma }{2}
Add \frac{1}{2} to \frac{-1-3\sigma }{2}.
x=-\frac{3\sigma }{2},y=-3\sigma -1
The system is now solved.
2x-2y=2-x+0-x
Consider the first equation. Multiply both sides of the equation by 2.
2x-2y=2-x-x
Add 2 and 0 to get 2.
2x-2y=2-2x
Combine -x and -x to get -2x.
2x-2y+2x=2
Add 2x to both sides.
4x-2y=2
Combine 2x and 2x to get 4x.
6x-6y=2\left(2-y\right)+3\sigma
Consider the second equation. Multiply both sides of the equation by 6, the least common multiple of 3,2.
6x-6y=4-2y+3\sigma
Use the distributive property to multiply 2 by 2-y.
6x-6y+2y=4+3\sigma
Add 2y to both sides.
6x-4y=4+3\sigma
Combine -6y and 2y to get -4y.
4x-2y=2,6x-4y=3\sigma +4
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&-2\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\sigma +4\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&-2\\6&-4\end{matrix}\right))\left(\begin{matrix}4&-2\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\6&-4\end{matrix}\right))\left(\begin{matrix}2\\3\sigma +4\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&-2\\6&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\6&-4\end{matrix}\right))\left(\begin{matrix}2\\3\sigma +4\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\6&-4\end{matrix}\right))\left(\begin{matrix}2\\3\sigma +4\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{4\left(-4\right)-\left(-2\times 6\right)}&-\frac{-2}{4\left(-4\right)-\left(-2\times 6\right)}\\-\frac{6}{4\left(-4\right)-\left(-2\times 6\right)}&\frac{4}{4\left(-4\right)-\left(-2\times 6\right)}\end{matrix}\right)\left(\begin{matrix}2\\3\sigma +4\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-\frac{1}{2}\\\frac{3}{2}&-1\end{matrix}\right)\left(\begin{matrix}2\\3\sigma +4\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2-\frac{1}{2}\left(3\sigma +4\right)\\\frac{3}{2}\times 2-\left(3\sigma +4\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3\sigma }{2}\\-3\sigma -1\end{matrix}\right)
Do the arithmetic.
x=-\frac{3\sigma }{2},y=-3\sigma -1
Extract the matrix elements x and y.
2x-2y=2-x+0-x
Consider the first equation. Multiply both sides of the equation by 2.
2x-2y=2-x-x
Add 2 and 0 to get 2.
2x-2y=2-2x
Combine -x and -x to get -2x.
2x-2y+2x=2
Add 2x to both sides.
4x-2y=2
Combine 2x and 2x to get 4x.
6x-6y=2\left(2-y\right)+3\sigma
Consider the second equation. Multiply both sides of the equation by 6, the least common multiple of 3,2.
6x-6y=4-2y+3\sigma
Use the distributive property to multiply 2 by 2-y.
6x-6y+2y=4+3\sigma
Add 2y to both sides.
6x-4y=4+3\sigma
Combine -6y and 2y to get -4y.
4x-2y=2,6x-4y=3\sigma +4
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
6\times 4x+6\left(-2\right)y=6\times 2,4\times 6x+4\left(-4\right)y=4\left(3\sigma +4\right)
To make 4x and 6x equal, multiply all terms on each side of the first equation by 6 and all terms on each side of the second by 4.
24x-12y=12,24x-16y=12\sigma +16
Simplify.
24x-24x-12y+16y=12-12\sigma -16
Subtract 24x-16y=12\sigma +16 from 24x-12y=12 by subtracting like terms on each side of the equal sign.
-12y+16y=12-12\sigma -16
Add 24x to -24x. Terms 24x and -24x cancel out, leaving an equation with only one variable that can be solved.
4y=12-12\sigma -16
Add -12y to 16y.
4y=-12\sigma -4
Add 12 to -16-12\sigma .
y=-3\sigma -1
Divide both sides by 4.
6x-4\left(-3\sigma -1\right)=3\sigma +4
Substitute -1-3\sigma for y in 6x-4y=3\sigma +4. Because the resulting equation contains only one variable, you can solve for x directly.
6x+12\sigma +4=3\sigma +4
Multiply -4 times -1-3\sigma .
6x=-9\sigma
Subtract 4+12\sigma from both sides of the equation.
x=-\frac{3\sigma }{2}
Divide both sides by 6.
x=-\frac{3\sigma }{2},y=-3\sigma -1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}