Solve for x, y, z
x=0
y=-\frac{1}{2}=-0.5
z = \frac{7}{2} = 3\frac{1}{2} = 3.5
Share
Copied to clipboard
x=y-3z+11
Solve x-y+3z=11 for x.
4\left(y-3z+11\right)+y-z=-4 2\left(y-3z+11\right)+y+3z=10
Substitute y-3z+11 for x in the second and third equation.
y=\frac{13}{5}z-\frac{48}{5} z=4+y
Solve these equations for y and z respectively.
z=4+\frac{13}{5}z-\frac{48}{5}
Substitute \frac{13}{5}z-\frac{48}{5} for y in the equation z=4+y.
z=\frac{7}{2}
Solve z=4+\frac{13}{5}z-\frac{48}{5} for z.
y=\frac{13}{5}\times \frac{7}{2}-\frac{48}{5}
Substitute \frac{7}{2} for z in the equation y=\frac{13}{5}z-\frac{48}{5}.
y=-\frac{1}{2}
Calculate y from y=\frac{13}{5}\times \frac{7}{2}-\frac{48}{5}.
x=-\frac{1}{2}-3\times \frac{7}{2}+11
Substitute -\frac{1}{2} for y and \frac{7}{2} for z in the equation x=y-3z+11.
x=0
Calculate x from x=-\frac{1}{2}-3\times \frac{7}{2}+11.
x=0 y=-\frac{1}{2} z=\frac{7}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}