Solve for x, y
x=0
y = \frac{9 \sqrt{2}}{4} \approx 3.181980515
Graph
Share
Copied to clipboard
-\sqrt{2}x+x=0
Consider the first equation. Reorder the terms.
\left(-\sqrt{2}+1\right)x=0
Combine all terms containing x,y.
5x+y\times 2\sqrt{2}=9
Consider the second equation. Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(1-\sqrt{2}\right)x=0,5x+2\sqrt{2}y=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\left(1-\sqrt{2}\right)x=0
Pick one of the two equations which is more simple to solve for x by isolating x on the left hand side of the equal sign.
x=0
Divide both sides by -\sqrt{2}+1.
2\sqrt{2}y=9
Substitute 0 for x in the other equation, 5x+2\sqrt{2}y=9.
y=\frac{9\sqrt{2}}{4}
Divide both sides by 2\sqrt{2}.
x=0,y=\frac{9\sqrt{2}}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}