Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-4\left(y-3\right)-5=26,3\left(x-4\right)+2\left(y+2\right)=-9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-4\left(y-3\right)-5=26
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x-4y+12-5=26
Multiply -4 times y-3.
x-4y+7=26
Add 12 to -5.
x-4y=19
Subtract 7 from both sides of the equation.
x=4y+19
Add 4y to both sides of the equation.
3\left(4y+19-4\right)+2\left(y+2\right)=-9
Substitute 4y+19 for x in the other equation, 3\left(x-4\right)+2\left(y+2\right)=-9.
3\left(4y+15\right)+2\left(y+2\right)=-9
Add 19 to -4.
12y+45+2\left(y+2\right)=-9
Multiply 3 times 4y+15.
12y+45+2y+4=-9
Multiply 2 times y+2.
14y+45+4=-9
Add 12y to 2y.
14y+49=-9
Add 45 to 4.
14y=-58
Subtract 49 from both sides of the equation.
y=-\frac{29}{7}
Divide both sides by 14.
x=4\left(-\frac{29}{7}\right)+19
Substitute -\frac{29}{7} for y in x=4y+19. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{116}{7}+19
Multiply 4 times -\frac{29}{7}.
x=\frac{17}{7}
Add 19 to -\frac{116}{7}.
x=\frac{17}{7},y=-\frac{29}{7}
The system is now solved.
x-4\left(y-3\right)-5=26,3\left(x-4\right)+2\left(y+2\right)=-9
Put the equations in standard form and then use matrices to solve the system of equations.
x-4\left(y-3\right)-5=26
Simplify the first equation to put it in standard form.
x-4y+12-5=26
Multiply -4 times y-3.
x-4y+7=26
Add 12 to -5.
x-4y=19
Subtract 7 from both sides of the equation.
3\left(x-4\right)+2\left(y+2\right)=-9
Simplify the second equation to put it in standard form.
3x-12+2\left(y+2\right)=-9
Multiply 3 times x-4.
3x-12+2y+4=-9
Multiply 2 times y+2.
3x+2y-8=-9
Add -12 to 4.
3x+2y=-1
Add 8 to both sides of the equation.
\left(\begin{matrix}1&-4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\-1\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-4\\3&2\end{matrix}\right))\left(\begin{matrix}1&-4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\3&2\end{matrix}\right))\left(\begin{matrix}19\\-1\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-4\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\3&2\end{matrix}\right))\left(\begin{matrix}19\\-1\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\3&2\end{matrix}\right))\left(\begin{matrix}19\\-1\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-4\times 3\right)}&-\frac{-4}{2-\left(-4\times 3\right)}\\-\frac{3}{2-\left(-4\times 3\right)}&\frac{1}{2-\left(-4\times 3\right)}\end{matrix}\right)\left(\begin{matrix}19\\-1\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\-\frac{3}{14}&\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}19\\-1\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 19+\frac{2}{7}\left(-1\right)\\-\frac{3}{14}\times 19+\frac{1}{14}\left(-1\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{7}\\-\frac{29}{7}\end{matrix}\right)
Do the arithmetic.
x=\frac{17}{7},y=-\frac{29}{7}
Extract the matrix elements x and y.