Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-3y=\sqrt{5},y^{2}+x^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-3y=\sqrt{5}
Solve x-3y=\sqrt{5} for x by isolating x on the left hand side of the equal sign.
x=3y+\sqrt{5}
Subtract -3y from both sides of the equation.
y^{2}+\left(3y+\sqrt{5}\right)^{2}=1
Substitute 3y+\sqrt{5} for x in the other equation, y^{2}+x^{2}=1.
y^{2}+9y^{2}+6\sqrt{5}y+\left(\sqrt{5}\right)^{2}=1
Square 3y+\sqrt{5}.
10y^{2}+6\sqrt{5}y+\left(\sqrt{5}\right)^{2}=1
Add y^{2} to 9y^{2}.
10y^{2}+6\sqrt{5}y+\left(\sqrt{5}\right)^{2}-1=0
Subtract 1 from both sides of the equation.
y=\frac{-6\sqrt{5}±\sqrt{\left(6\sqrt{5}\right)^{2}-4\times 10\times 4}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 3^{2} for a, 1\times 2\times 3\sqrt{5} for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-6\sqrt{5}±\sqrt{180-4\times 10\times 4}}{2\times 10}
Square 1\times 2\times 3\sqrt{5}.
y=\frac{-6\sqrt{5}±\sqrt{180-40\times 4}}{2\times 10}
Multiply -4 times 1+1\times 3^{2}.
y=\frac{-6\sqrt{5}±\sqrt{180-160}}{2\times 10}
Multiply -40 times 4.
y=\frac{-6\sqrt{5}±\sqrt{20}}{2\times 10}
Add 180 to -160.
y=\frac{-6\sqrt{5}±2\sqrt{5}}{2\times 10}
Take the square root of 20.
y=\frac{-6\sqrt{5}±2\sqrt{5}}{20}
Multiply 2 times 1+1\times 3^{2}.
y=-\frac{4\sqrt{5}}{20}
Now solve the equation y=\frac{-6\sqrt{5}±2\sqrt{5}}{20} when ± is plus. Add -6\sqrt{5} to 2\sqrt{5}.
y=-\frac{\sqrt{5}}{5}
Divide -4\sqrt{5} by 20.
y=-\frac{8\sqrt{5}}{20}
Now solve the equation y=\frac{-6\sqrt{5}±2\sqrt{5}}{20} when ± is minus. Subtract 2\sqrt{5} from -6\sqrt{5}.
y=-\frac{2\sqrt{5}}{5}
Divide -8\sqrt{5} by 20.
x=3\left(-\frac{\sqrt{5}}{5}\right)+\sqrt{5}
There are two solutions for y: -\frac{\sqrt{5}}{5} and -\frac{2\sqrt{5}}{5}. Substitute -\frac{\sqrt{5}}{5} for y in the equation x=3y+\sqrt{5} to find the corresponding solution for x that satisfies both equations.
x=3\left(-\frac{2\sqrt{5}}{5}\right)+\sqrt{5}
Now substitute -\frac{2\sqrt{5}}{5} for y in the equation x=3y+\sqrt{5} and solve to find the corresponding solution for x that satisfies both equations.
x=3\left(-\frac{\sqrt{5}}{5}\right)+\sqrt{5},y=-\frac{\sqrt{5}}{5}\text{ or }x=3\left(-\frac{2\sqrt{5}}{5}\right)+\sqrt{5},y=-\frac{2\sqrt{5}}{5}
The system is now solved.