Solve for x, y
x=-\frac{\sqrt{5}}{5}\approx -0.447213595\text{, }y=-\frac{2\sqrt{5}}{5}\approx -0.894427191
x=\frac{2\sqrt{5}}{5}\approx 0.894427191\text{, }y=-\frac{\sqrt{5}}{5}\approx -0.447213595
Graph
Share
Copied to clipboard
x-3y=\sqrt{5},y^{2}+x^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-3y=\sqrt{5}
Solve x-3y=\sqrt{5} for x by isolating x on the left hand side of the equal sign.
x=3y+\sqrt{5}
Subtract -3y from both sides of the equation.
y^{2}+\left(3y+\sqrt{5}\right)^{2}=1
Substitute 3y+\sqrt{5} for x in the other equation, y^{2}+x^{2}=1.
y^{2}+9y^{2}+6\sqrt{5}y+\left(\sqrt{5}\right)^{2}=1
Square 3y+\sqrt{5}.
10y^{2}+6\sqrt{5}y+\left(\sqrt{5}\right)^{2}=1
Add y^{2} to 9y^{2}.
10y^{2}+6\sqrt{5}y+\left(\sqrt{5}\right)^{2}-1=0
Subtract 1 from both sides of the equation.
y=\frac{-6\sqrt{5}±\sqrt{\left(6\sqrt{5}\right)^{2}-4\times 10\times 4}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 3^{2} for a, 1\times 2\times 3\sqrt{5} for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-6\sqrt{5}±\sqrt{180-4\times 10\times 4}}{2\times 10}
Square 1\times 2\times 3\sqrt{5}.
y=\frac{-6\sqrt{5}±\sqrt{180-40\times 4}}{2\times 10}
Multiply -4 times 1+1\times 3^{2}.
y=\frac{-6\sqrt{5}±\sqrt{180-160}}{2\times 10}
Multiply -40 times 4.
y=\frac{-6\sqrt{5}±\sqrt{20}}{2\times 10}
Add 180 to -160.
y=\frac{-6\sqrt{5}±2\sqrt{5}}{2\times 10}
Take the square root of 20.
y=\frac{-6\sqrt{5}±2\sqrt{5}}{20}
Multiply 2 times 1+1\times 3^{2}.
y=-\frac{4\sqrt{5}}{20}
Now solve the equation y=\frac{-6\sqrt{5}±2\sqrt{5}}{20} when ± is plus. Add -6\sqrt{5} to 2\sqrt{5}.
y=-\frac{\sqrt{5}}{5}
Divide -4\sqrt{5} by 20.
y=-\frac{8\sqrt{5}}{20}
Now solve the equation y=\frac{-6\sqrt{5}±2\sqrt{5}}{20} when ± is minus. Subtract 2\sqrt{5} from -6\sqrt{5}.
y=-\frac{2\sqrt{5}}{5}
Divide -8\sqrt{5} by 20.
x=3\left(-\frac{\sqrt{5}}{5}\right)+\sqrt{5}
There are two solutions for y: -\frac{\sqrt{5}}{5} and -\frac{2\sqrt{5}}{5}. Substitute -\frac{\sqrt{5}}{5} for y in the equation x=3y+\sqrt{5} to find the corresponding solution for x that satisfies both equations.
x=3\left(-\frac{2\sqrt{5}}{5}\right)+\sqrt{5}
Now substitute -\frac{2\sqrt{5}}{5} for y in the equation x=3y+\sqrt{5} and solve to find the corresponding solution for x that satisfies both equations.
x=3\left(-\frac{\sqrt{5}}{5}\right)+\sqrt{5},y=-\frac{\sqrt{5}}{5}\text{ or }x=3\left(-\frac{2\sqrt{5}}{5}\right)+\sqrt{5},y=-\frac{2\sqrt{5}}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}