Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

xy-2x-y\left(x-3\right)=-14
Consider the first equation. Use the distributive property to multiply x by y-2.
xy-2x-\left(yx-3y\right)=-14
Use the distributive property to multiply y by x-3.
xy-2x-yx+3y=-14
To find the opposite of yx-3y, find the opposite of each term.
-2x+3y=-14
Combine xy and -yx to get 0.
yx-6y-x\left(y+9\right)=84
Consider the second equation. Use the distributive property to multiply y by x-6.
yx-6y-\left(xy+9x\right)=84
Use the distributive property to multiply x by y+9.
yx-6y-xy-9x=84
To find the opposite of xy+9x, find the opposite of each term.
-6y-9x=84
Combine yx and -xy to get 0.
-2x+3y=-14,-9x-6y=84
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-2x+3y=-14
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-2x=-3y-14
Subtract 3y from both sides of the equation.
x=-\frac{1}{2}\left(-3y-14\right)
Divide both sides by -2.
x=\frac{3}{2}y+7
Multiply -\frac{1}{2} times -3y-14.
-9\left(\frac{3}{2}y+7\right)-6y=84
Substitute \frac{3y}{2}+7 for x in the other equation, -9x-6y=84.
-\frac{27}{2}y-63-6y=84
Multiply -9 times \frac{3y}{2}+7.
-\frac{39}{2}y-63=84
Add -\frac{27y}{2} to -6y.
-\frac{39}{2}y=147
Add 63 to both sides of the equation.
y=-\frac{98}{13}
Divide both sides of the equation by -\frac{39}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{3}{2}\left(-\frac{98}{13}\right)+7
Substitute -\frac{98}{13} for y in x=\frac{3}{2}y+7. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{147}{13}+7
Multiply \frac{3}{2} times -\frac{98}{13} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{56}{13}
Add 7 to -\frac{147}{13}.
x=-\frac{56}{13},y=-\frac{98}{13}
The system is now solved.
xy-2x-y\left(x-3\right)=-14
Consider the first equation. Use the distributive property to multiply x by y-2.
xy-2x-\left(yx-3y\right)=-14
Use the distributive property to multiply y by x-3.
xy-2x-yx+3y=-14
To find the opposite of yx-3y, find the opposite of each term.
-2x+3y=-14
Combine xy and -yx to get 0.
yx-6y-x\left(y+9\right)=84
Consider the second equation. Use the distributive property to multiply y by x-6.
yx-6y-\left(xy+9x\right)=84
Use the distributive property to multiply x by y+9.
yx-6y-xy-9x=84
To find the opposite of xy+9x, find the opposite of each term.
-6y-9x=84
Combine yx and -xy to get 0.
-2x+3y=-14,-9x-6y=84
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-2&3\\-9&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14\\84\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-2&3\\-9&-6\end{matrix}\right))\left(\begin{matrix}-2&3\\-9&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\-9&-6\end{matrix}\right))\left(\begin{matrix}-14\\84\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-2&3\\-9&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\-9&-6\end{matrix}\right))\left(\begin{matrix}-14\\84\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\-9&-6\end{matrix}\right))\left(\begin{matrix}-14\\84\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-2\left(-6\right)-3\left(-9\right)}&-\frac{3}{-2\left(-6\right)-3\left(-9\right)}\\-\frac{-9}{-2\left(-6\right)-3\left(-9\right)}&-\frac{2}{-2\left(-6\right)-3\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}-14\\84\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}&-\frac{1}{13}\\\frac{3}{13}&-\frac{2}{39}\end{matrix}\right)\left(\begin{matrix}-14\\84\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}\left(-14\right)-\frac{1}{13}\times 84\\\frac{3}{13}\left(-14\right)-\frac{2}{39}\times 84\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{56}{13}\\-\frac{98}{13}\end{matrix}\right)
Do the arithmetic.
x=-\frac{56}{13},y=-\frac{98}{13}
Extract the matrix elements x and y.
xy-2x-y\left(x-3\right)=-14
Consider the first equation. Use the distributive property to multiply x by y-2.
xy-2x-\left(yx-3y\right)=-14
Use the distributive property to multiply y by x-3.
xy-2x-yx+3y=-14
To find the opposite of yx-3y, find the opposite of each term.
-2x+3y=-14
Combine xy and -yx to get 0.
yx-6y-x\left(y+9\right)=84
Consider the second equation. Use the distributive property to multiply y by x-6.
yx-6y-\left(xy+9x\right)=84
Use the distributive property to multiply x by y+9.
yx-6y-xy-9x=84
To find the opposite of xy+9x, find the opposite of each term.
-6y-9x=84
Combine yx and -xy to get 0.
-2x+3y=-14,-9x-6y=84
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-9\left(-2\right)x-9\times 3y=-9\left(-14\right),-2\left(-9\right)x-2\left(-6\right)y=-2\times 84
To make -2x and -9x equal, multiply all terms on each side of the first equation by -9 and all terms on each side of the second by -2.
18x-27y=126,18x+12y=-168
Simplify.
18x-18x-27y-12y=126+168
Subtract 18x+12y=-168 from 18x-27y=126 by subtracting like terms on each side of the equal sign.
-27y-12y=126+168
Add 18x to -18x. Terms 18x and -18x cancel out, leaving an equation with only one variable that can be solved.
-39y=126+168
Add -27y to -12y.
-39y=294
Add 126 to 168.
y=-\frac{98}{13}
Divide both sides by -39.
-9x-6\left(-\frac{98}{13}\right)=84
Substitute -\frac{98}{13} for y in -9x-6y=84. Because the resulting equation contains only one variable, you can solve for x directly.
-9x+\frac{588}{13}=84
Multiply -6 times -\frac{98}{13}.
-9x=\frac{504}{13}
Subtract \frac{588}{13} from both sides of the equation.
x=-\frac{56}{13}
Divide both sides by -9.
x=-\frac{56}{13},y=-\frac{98}{13}
The system is now solved.