Skip to main content
Least Common Multiple
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

x^{6}-y^{6}=\left(x+y\right)\left(x-y\right)\left(x^{2}-xy+y^{2}\right)\left(x^{2}+xy+y^{2}\right) x^{12}-y^{6}=\left(x^{2}+y\right)\left(x^{2}-y\right)\left(x^{4}+y^{2}-yx^{2}\right)\left(x^{4}+y^{2}+yx^{2}\right)
Factor the expressions that are not already factored.
\left(x-y\right)\left(x+y\right)\left(x^{2}-y\right)\left(x^{2}+y\right)\left(x^{2}-xy+y^{2}\right)\left(x^{2}+xy+y^{2}\right)\left(x^{4}+y^{2}-yx^{2}\right)\left(x^{4}+y^{2}+yx^{2}\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
x^{18}-x^{6}y^{6}+y^{12}-y^{6}x^{12}
Expand the expression.