Solve for x, y
y = \frac{83317}{1296} = 64\frac{373}{1296} \approx 64.287808642
Graph
Share
Copied to clipboard
-54x=-117
Consider the first equation. Subtract 117 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-117}{-54}
Divide both sides by -54.
x=\frac{13}{6}
Reduce the fraction \frac{-117}{-54} to lowest terms by extracting and canceling out -9.
y=\left(\frac{13}{6}\right)^{4}-6\times \left(\frac{13}{6}\right)^{3}+22\times \left(\frac{13}{6}\right)^{2}
Consider the second equation. Insert the known values of variables into the equation.
y=\frac{28561}{1296}-6\times \left(\frac{13}{6}\right)^{3}+22\times \left(\frac{13}{6}\right)^{2}
Calculate \frac{13}{6} to the power of 4 and get \frac{28561}{1296}.
y=\frac{28561}{1296}-6\times \frac{2197}{216}+22\times \left(\frac{13}{6}\right)^{2}
Calculate \frac{13}{6} to the power of 3 and get \frac{2197}{216}.
y=\frac{28561}{1296}-\frac{2197}{36}+22\times \left(\frac{13}{6}\right)^{2}
Multiply -6 and \frac{2197}{216} to get -\frac{2197}{36}.
y=-\frac{50531}{1296}+22\times \left(\frac{13}{6}\right)^{2}
Subtract \frac{2197}{36} from \frac{28561}{1296} to get -\frac{50531}{1296}.
y=-\frac{50531}{1296}+22\times \frac{169}{36}
Calculate \frac{13}{6} to the power of 2 and get \frac{169}{36}.
y=-\frac{50531}{1296}+\frac{1859}{18}
Multiply 22 and \frac{169}{36} to get \frac{1859}{18}.
y=\frac{83317}{1296}
Add -\frac{50531}{1296} and \frac{1859}{18} to get \frac{83317}{1296}.
x=\frac{13}{6} y=\frac{83317}{1296}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}