Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

-54x=-117
Consider the first equation. Subtract 117 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-117}{-54}
Divide both sides by -54.
x=\frac{13}{6}
Reduce the fraction \frac{-117}{-54} to lowest terms by extracting and canceling out -9.
y=\left(\frac{13}{6}\right)^{4}-6\times \left(\frac{13}{6}\right)^{3}+22\times \left(\frac{13}{6}\right)^{2}
Consider the second equation. Insert the known values of variables into the equation.
y=\frac{28561}{1296}-6\times \left(\frac{13}{6}\right)^{3}+22\times \left(\frac{13}{6}\right)^{2}
Calculate \frac{13}{6} to the power of 4 and get \frac{28561}{1296}.
y=\frac{28561}{1296}-6\times \frac{2197}{216}+22\times \left(\frac{13}{6}\right)^{2}
Calculate \frac{13}{6} to the power of 3 and get \frac{2197}{216}.
y=\frac{28561}{1296}-\frac{2197}{36}+22\times \left(\frac{13}{6}\right)^{2}
Multiply -6 and \frac{2197}{216} to get -\frac{2197}{36}.
y=-\frac{50531}{1296}+22\times \left(\frac{13}{6}\right)^{2}
Subtract \frac{2197}{36} from \frac{28561}{1296} to get -\frac{50531}{1296}.
y=-\frac{50531}{1296}+22\times \frac{169}{36}
Calculate \frac{13}{6} to the power of 2 and get \frac{169}{36}.
y=-\frac{50531}{1296}+\frac{1859}{18}
Multiply 22 and \frac{169}{36} to get \frac{1859}{18}.
y=\frac{83317}{1296}
Add -\frac{50531}{1296} and \frac{1859}{18} to get \frac{83317}{1296}.
x=\frac{13}{6} y=\frac{83317}{1296}
The system is now solved.