Solve for x, y
x=4\text{, }y=3
x=-\frac{8}{3}\approx -2.666666667\text{, }y=-\frac{1}{3}\approx -0.333333333
Graph
Share
Copied to clipboard
2y-x=2
Consider the second equation. Subtract x from both sides.
2y-x=2,x^{2}-y^{2}=7
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2y-x=2
Solve 2y-x=2 for y by isolating y on the left hand side of the equal sign.
2y=x+2
Subtract -x from both sides of the equation.
y=\frac{1}{2}x+1
Divide both sides by 2.
x^{2}-\left(\frac{1}{2}x+1\right)^{2}=7
Substitute \frac{1}{2}x+1 for y in the other equation, x^{2}-y^{2}=7.
x^{2}-\left(\frac{1}{4}x^{2}+x+1\right)=7
Square \frac{1}{2}x+1.
x^{2}-\frac{1}{4}x^{2}-x-1=7
Multiply -1 times \frac{1}{4}x^{2}+x+1.
\frac{3}{4}x^{2}-x-1=7
Add x^{2} to -\frac{1}{4}x^{2}.
\frac{3}{4}x^{2}-x-8=0
Subtract 7 from both sides of the equation.
x=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{3}{4}\left(-8\right)}}{2\times \frac{3}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1-\left(\frac{1}{2}\right)^{2} for a, -\frac{1}{2}\times 2 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-3\left(-8\right)}}{2\times \frac{3}{4}}
Multiply -4 times 1-\left(\frac{1}{2}\right)^{2}.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times \frac{3}{4}}
Multiply -3 times -8.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times \frac{3}{4}}
Add 1 to 24.
x=\frac{-\left(-1\right)±5}{2\times \frac{3}{4}}
Take the square root of 25.
x=\frac{1±5}{2\times \frac{3}{4}}
The opposite of -\frac{1}{2}\times 2 is 1.
x=\frac{1±5}{\frac{3}{2}}
Multiply 2 times 1-\left(\frac{1}{2}\right)^{2}.
x=\frac{6}{\frac{3}{2}}
Now solve the equation x=\frac{1±5}{\frac{3}{2}} when ± is plus. Add 1 to 5.
x=4
Divide 6 by \frac{3}{2} by multiplying 6 by the reciprocal of \frac{3}{2}.
x=-\frac{4}{\frac{3}{2}}
Now solve the equation x=\frac{1±5}{\frac{3}{2}} when ± is minus. Subtract 5 from 1.
x=-\frac{8}{3}
Divide -4 by \frac{3}{2} by multiplying -4 by the reciprocal of \frac{3}{2}.
y=\frac{1}{2}\times 4+1
There are two solutions for x: 4 and -\frac{8}{3}. Substitute 4 for x in the equation y=\frac{1}{2}x+1 to find the corresponding solution for y that satisfies both equations.
y=2+1
Multiply \frac{1}{2} times 4.
y=3
Add \frac{1}{2}\times 4 to 1.
y=\frac{1}{2}\left(-\frac{8}{3}\right)+1
Now substitute -\frac{8}{3} for x in the equation y=\frac{1}{2}x+1 and solve to find the corresponding solution for y that satisfies both equations.
y=-\frac{4}{3}+1
Multiply \frac{1}{2} times -\frac{8}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=-\frac{1}{3}
Add -\frac{8}{3}\times \frac{1}{2} to 1.
y=3,x=4\text{ or }y=-\frac{1}{3},x=-\frac{8}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}