Solve for x, y (complex solution)
x=\frac{-10\sqrt{11}i+20}{3}\approx 6.666666667-11.055415968i\text{, }y=\frac{-20\sqrt{11}i+10}{3}\approx 3.333333333-22.110831936i
x=\frac{20+10\sqrt{11}i}{3}\approx 6.666666667+11.055415968i\text{, }y=\frac{10+20\sqrt{11}i}{3}\approx 3.333333333+22.110831936i
Graph
Share
Copied to clipboard
y-2x=-10
Consider the second equation. Subtract 2x from both sides.
y=2x-10
Subtract -2x from both sides of the equation.
x^{2}-\left(2x-10\right)^{2}=400
Substitute 2x-10 for y in the other equation, x^{2}-y^{2}=400.
x^{2}-\left(4x^{2}-40x+100\right)=400
Square 2x-10.
x^{2}-4x^{2}+40x-100=400
Multiply -1 times 4x^{2}-40x+100.
-3x^{2}+40x-100=400
Add x^{2} to -4x^{2}.
-3x^{2}+40x-500=0
Subtract 400 from both sides of the equation.
x=\frac{-40±\sqrt{40^{2}-4\left(-3\right)\left(-500\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1-2^{2} for a, -\left(-10\right)\times 2\times 2 for b, and -500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\left(-3\right)\left(-500\right)}}{2\left(-3\right)}
Square -\left(-10\right)\times 2\times 2.
x=\frac{-40±\sqrt{1600+12\left(-500\right)}}{2\left(-3\right)}
Multiply -4 times 1-2^{2}.
x=\frac{-40±\sqrt{1600-6000}}{2\left(-3\right)}
Multiply 12 times -500.
x=\frac{-40±\sqrt{-4400}}{2\left(-3\right)}
Add 1600 to -6000.
x=\frac{-40±20\sqrt{11}i}{2\left(-3\right)}
Take the square root of -4400.
x=\frac{-40±20\sqrt{11}i}{-6}
Multiply 2 times 1-2^{2}.
x=\frac{-40+20\sqrt{11}i}{-6}
Now solve the equation x=\frac{-40±20\sqrt{11}i}{-6} when ± is plus. Add -40 to 20i\sqrt{11}.
x=\frac{-10\sqrt{11}i+20}{3}
Divide -40+20i\sqrt{11} by -6.
x=\frac{-20\sqrt{11}i-40}{-6}
Now solve the equation x=\frac{-40±20\sqrt{11}i}{-6} when ± is minus. Subtract 20i\sqrt{11} from -40.
x=\frac{20+10\sqrt{11}i}{3}
Divide -40-20i\sqrt{11} by -6.
y=2\times \frac{-10\sqrt{11}i+20}{3}-10
There are two solutions for x: \frac{20-10i\sqrt{11}}{3} and \frac{20+10i\sqrt{11}}{3}. Substitute \frac{20-10i\sqrt{11}}{3} for x in the equation y=2x-10 to find the corresponding solution for y that satisfies both equations.
y=2\times \frac{20+10\sqrt{11}i}{3}-10
Now substitute \frac{20+10i\sqrt{11}}{3} for x in the equation y=2x-10 and solve to find the corresponding solution for y that satisfies both equations.
y=2\times \frac{-10\sqrt{11}i+20}{3}-10,x=\frac{-10\sqrt{11}i+20}{3}\text{ or }y=2\times \frac{20+10\sqrt{11}i}{3}-10,x=\frac{20+10\sqrt{11}i}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}