Solve for x, y
x=-5\text{, }y=-3
x=5\text{, }y=3
Graph
Share
Copied to clipboard
3x-5y=0,-y^{2}+x^{2}=16
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x-5y=0
Solve 3x-5y=0 for x by isolating x on the left hand side of the equal sign.
3x=5y
Subtract -5y from both sides of the equation.
x=\frac{5}{3}y
Divide both sides by 3.
-y^{2}+\left(\frac{5}{3}y\right)^{2}=16
Substitute \frac{5}{3}y for x in the other equation, -y^{2}+x^{2}=16.
-y^{2}+\frac{25}{9}y^{2}=16
Square \frac{5}{3}y.
\frac{16}{9}y^{2}=16
Add -y^{2} to \frac{25}{9}y^{2}.
\frac{16}{9}y^{2}-16=0
Subtract 16 from both sides of the equation.
y=\frac{0±\sqrt{0^{2}-4\times \frac{16}{9}\left(-16\right)}}{2\times \frac{16}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1+1\times \left(\frac{5}{3}\right)^{2} for a, 1\times 0\times \frac{5}{3}\times 2 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times \frac{16}{9}\left(-16\right)}}{2\times \frac{16}{9}}
Square 1\times 0\times \frac{5}{3}\times 2.
y=\frac{0±\sqrt{-\frac{64}{9}\left(-16\right)}}{2\times \frac{16}{9}}
Multiply -4 times -1+1\times \left(\frac{5}{3}\right)^{2}.
y=\frac{0±\sqrt{\frac{1024}{9}}}{2\times \frac{16}{9}}
Multiply -\frac{64}{9} times -16.
y=\frac{0±\frac{32}{3}}{2\times \frac{16}{9}}
Take the square root of \frac{1024}{9}.
y=\frac{0±\frac{32}{3}}{\frac{32}{9}}
Multiply 2 times -1+1\times \left(\frac{5}{3}\right)^{2}.
y=3
Now solve the equation y=\frac{0±\frac{32}{3}}{\frac{32}{9}} when ± is plus.
y=-3
Now solve the equation y=\frac{0±\frac{32}{3}}{\frac{32}{9}} when ± is minus.
x=\frac{5}{3}\times 3
There are two solutions for y: 3 and -3. Substitute 3 for y in the equation x=\frac{5}{3}y to find the corresponding solution for x that satisfies both equations.
x=5
Multiply \frac{5}{3} times 3.
x=\frac{5}{3}\left(-3\right)
Now substitute -3 for y in the equation x=\frac{5}{3}y and solve to find the corresponding solution for x that satisfies both equations.
x=-5
Multiply \frac{5}{3} times -3.
x=5,y=3\text{ or }x=-5,y=-3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}