Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x+6y=7
Solve 5x+6y=7 for x by isolating x on the left hand side of the equal sign.
5x=-6y+7
Subtract 6y from both sides of the equation.
x=-\frac{6}{5}y+\frac{7}{5}
Divide both sides by 5.
-4y^{2}+\left(-\frac{6}{5}y+\frac{7}{5}\right)^{2}=9
Substitute -\frac{6}{5}y+\frac{7}{5} for x in the other equation, -4y^{2}+x^{2}=9.
-4y^{2}+\frac{36}{25}y^{2}-\frac{84}{25}y+\frac{49}{25}=9
Square -\frac{6}{5}y+\frac{7}{5}.
-\frac{64}{25}y^{2}-\frac{84}{25}y+\frac{49}{25}=9
Add -4y^{2} to \frac{36}{25}y^{2}.
-\frac{64}{25}y^{2}-\frac{84}{25}y-\frac{176}{25}=0
Subtract 9 from both sides of the equation.
y=\frac{-\left(-\frac{84}{25}\right)±\sqrt{\left(-\frac{84}{25}\right)^{2}-4\left(-\frac{64}{25}\right)\left(-\frac{176}{25}\right)}}{2\left(-\frac{64}{25}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4+1\left(-\frac{6}{5}\right)^{2} for a, 1\times \frac{7}{5}\left(-\frac{6}{5}\right)\times 2 for b, and -\frac{176}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{84}{25}\right)±\sqrt{\frac{7056}{625}-4\left(-\frac{64}{25}\right)\left(-\frac{176}{25}\right)}}{2\left(-\frac{64}{25}\right)}
Square 1\times \frac{7}{5}\left(-\frac{6}{5}\right)\times 2.
y=\frac{-\left(-\frac{84}{25}\right)±\sqrt{\frac{7056}{625}+\frac{256}{25}\left(-\frac{176}{25}\right)}}{2\left(-\frac{64}{25}\right)}
Multiply -4 times -4+1\left(-\frac{6}{5}\right)^{2}.
y=\frac{-\left(-\frac{84}{25}\right)±\sqrt{\frac{7056-45056}{625}}}{2\left(-\frac{64}{25}\right)}
Multiply \frac{256}{25} times -\frac{176}{25} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{84}{25}\right)±\sqrt{-\frac{304}{5}}}{2\left(-\frac{64}{25}\right)}
Add \frac{7056}{625} to -\frac{45056}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{84}{25}\right)±\frac{4\sqrt{95}i}{5}}{2\left(-\frac{64}{25}\right)}
Take the square root of -\frac{304}{5}.
y=\frac{\frac{84}{25}±\frac{4\sqrt{95}i}{5}}{2\left(-\frac{64}{25}\right)}
The opposite of 1\times \frac{7}{5}\left(-\frac{6}{5}\right)\times 2 is \frac{84}{25}.
y=\frac{\frac{84}{25}±\frac{4\sqrt{95}i}{5}}{-\frac{128}{25}}
Multiply 2 times -4+1\left(-\frac{6}{5}\right)^{2}.
y=\frac{\frac{4\sqrt{95}i}{5}+\frac{84}{25}}{-\frac{128}{25}}
Now solve the equation y=\frac{\frac{84}{25}±\frac{4\sqrt{95}i}{5}}{-\frac{128}{25}} when ± is plus. Add \frac{84}{25} to \frac{4i\sqrt{95}}{5}.
y=\frac{-5\sqrt{95}i-21}{32}
Divide \frac{84}{25}+\frac{4i\sqrt{95}}{5} by -\frac{128}{25} by multiplying \frac{84}{25}+\frac{4i\sqrt{95}}{5} by the reciprocal of -\frac{128}{25}.
y=\frac{-\frac{4\sqrt{95}i}{5}+\frac{84}{25}}{-\frac{128}{25}}
Now solve the equation y=\frac{\frac{84}{25}±\frac{4\sqrt{95}i}{5}}{-\frac{128}{25}} when ± is minus. Subtract \frac{4i\sqrt{95}}{5} from \frac{84}{25}.
y=\frac{-21+5\sqrt{95}i}{32}
Divide \frac{84}{25}-\frac{4i\sqrt{95}}{5} by -\frac{128}{25} by multiplying \frac{84}{25}-\frac{4i\sqrt{95}}{5} by the reciprocal of -\frac{128}{25}.
x=-\frac{6}{5}\times \frac{-5\sqrt{95}i-21}{32}+\frac{7}{5}
There are two solutions for y: \frac{-21-5i\sqrt{95}}{32} and \frac{-21+5i\sqrt{95}}{32}. Substitute \frac{-21-5i\sqrt{95}}{32} for y in the equation x=-\frac{6}{5}y+\frac{7}{5} to find the corresponding solution for x that satisfies both equations.
x=\frac{-6\times \frac{-5\sqrt{95}i-21}{32}+7}{5}
Multiply -\frac{6}{5} times \frac{-21-5i\sqrt{95}}{32}.
x=-\frac{6}{5}\times \frac{-21+5\sqrt{95}i}{32}+\frac{7}{5}
Now substitute \frac{-21+5i\sqrt{95}}{32} for y in the equation x=-\frac{6}{5}y+\frac{7}{5} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{-6\times \frac{-21+5\sqrt{95}i}{32}+7}{5}
Multiply -\frac{6}{5} times \frac{-21+5i\sqrt{95}}{32}.
x=\frac{-6\times \frac{-5\sqrt{95}i-21}{32}+7}{5},y=\frac{-5\sqrt{95}i-21}{32}\text{ or }x=\frac{-6\times \frac{-21+5\sqrt{95}i}{32}+7}{5},y=\frac{-21+5\sqrt{95}i}{32}
The system is now solved.