Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+2y=8,-2y^{2}+x^{2}=8
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+2y=8
Solve x+2y=8 for x by isolating x on the left hand side of the equal sign.
x=-2y+8
Subtract 2y from both sides of the equation.
-2y^{2}+\left(-2y+8\right)^{2}=8
Substitute -2y+8 for x in the other equation, -2y^{2}+x^{2}=8.
-2y^{2}+4y^{2}-32y+64=8
Square -2y+8.
2y^{2}-32y+64=8
Add -2y^{2} to 4y^{2}.
2y^{2}-32y+56=0
Subtract 8 from both sides of the equation.
y=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 2\times 56}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2+1\left(-2\right)^{2} for a, 1\times 8\left(-2\right)\times 2 for b, and 56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-32\right)±\sqrt{1024-4\times 2\times 56}}{2\times 2}
Square 1\times 8\left(-2\right)\times 2.
y=\frac{-\left(-32\right)±\sqrt{1024-8\times 56}}{2\times 2}
Multiply -4 times -2+1\left(-2\right)^{2}.
y=\frac{-\left(-32\right)±\sqrt{1024-448}}{2\times 2}
Multiply -8 times 56.
y=\frac{-\left(-32\right)±\sqrt{576}}{2\times 2}
Add 1024 to -448.
y=\frac{-\left(-32\right)±24}{2\times 2}
Take the square root of 576.
y=\frac{32±24}{2\times 2}
The opposite of 1\times 8\left(-2\right)\times 2 is 32.
y=\frac{32±24}{4}
Multiply 2 times -2+1\left(-2\right)^{2}.
y=\frac{56}{4}
Now solve the equation y=\frac{32±24}{4} when ± is plus. Add 32 to 24.
y=14
Divide 56 by 4.
y=\frac{8}{4}
Now solve the equation y=\frac{32±24}{4} when ± is minus. Subtract 24 from 32.
y=2
Divide 8 by 4.
x=-2\times 14+8
There are two solutions for y: 14 and 2. Substitute 14 for y in the equation x=-2y+8 to find the corresponding solution for x that satisfies both equations.
x=-28+8
Multiply -2 times 14.
x=-20
Add -2\times 14 to 8.
x=-2\times 2+8
Now substitute 2 for y in the equation x=-2y+8 and solve to find the corresponding solution for x that satisfies both equations.
x=-4+8
Multiply -2 times 2.
x=4
Add -2\times 2 to 8.
x=-20,y=14\text{ or }x=4,y=2
The system is now solved.