Solve for x
x=\frac{3+\sqrt{7}i}{4}\approx 0.75+0.661437828i
x=\frac{-\sqrt{7}i+3}{4}\approx 0.75-0.661437828i
Share
Copied to clipboard
x^{2}-\frac{3}{2}x=-1
Subtract \frac{3}{2}x from both sides.
x^{2}-\frac{3}{2}x+1=0
Add 1 to both sides.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{3}{2} for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-4}}{2}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{-\frac{7}{4}}}{2}
Add \frac{9}{4} to -4.
x=\frac{-\left(-\frac{3}{2}\right)±\frac{\sqrt{7}i}{2}}{2}
Take the square root of -\frac{7}{4}.
x=\frac{\frac{3}{2}±\frac{\sqrt{7}i}{2}}{2}
The opposite of -\frac{3}{2} is \frac{3}{2}.
x=\frac{3+\sqrt{7}i}{2\times 2}
Now solve the equation x=\frac{\frac{3}{2}±\frac{\sqrt{7}i}{2}}{2} when ± is plus. Add \frac{3}{2} to \frac{i\sqrt{7}}{2}.
x=\frac{3+\sqrt{7}i}{4}
Divide \frac{3+i\sqrt{7}}{2} by 2.
x=\frac{-\sqrt{7}i+3}{2\times 2}
Now solve the equation x=\frac{\frac{3}{2}±\frac{\sqrt{7}i}{2}}{2} when ± is minus. Subtract \frac{i\sqrt{7}}{2} from \frac{3}{2}.
x=\frac{-\sqrt{7}i+3}{4}
Divide \frac{3-i\sqrt{7}}{2} by 2.
x=\frac{3+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i+3}{4}
The equation is now solved.
x^{2}-\frac{3}{2}x=-1
Subtract \frac{3}{2}x from both sides.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-1+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-1+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{7}{16}
Add -1 to \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=-\frac{7}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{-\frac{7}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{\sqrt{7}i}{4} x-\frac{3}{4}=-\frac{\sqrt{7}i}{4}
Simplify.
x=\frac{3+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i+3}{4}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}