Skip to main content
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

x^{2}-\frac{3}{2}x=-1
Subtract \frac{3}{2}x from both sides.
x^{2}-\frac{3}{2}x+1=0
Add 1 to both sides.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{3}{2} for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-4}}{2}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{-\frac{7}{4}}}{2}
Add \frac{9}{4} to -4.
x=\frac{-\left(-\frac{3}{2}\right)±\frac{\sqrt{7}i}{2}}{2}
Take the square root of -\frac{7}{4}.
x=\frac{\frac{3}{2}±\frac{\sqrt{7}i}{2}}{2}
The opposite of -\frac{3}{2} is \frac{3}{2}.
x=\frac{3+\sqrt{7}i}{2\times 2}
Now solve the equation x=\frac{\frac{3}{2}±\frac{\sqrt{7}i}{2}}{2} when ± is plus. Add \frac{3}{2} to \frac{i\sqrt{7}}{2}.
x=\frac{3+\sqrt{7}i}{4}
Divide \frac{3+i\sqrt{7}}{2} by 2.
x=\frac{-\sqrt{7}i+3}{2\times 2}
Now solve the equation x=\frac{\frac{3}{2}±\frac{\sqrt{7}i}{2}}{2} when ± is minus. Subtract \frac{i\sqrt{7}}{2} from \frac{3}{2}.
x=\frac{-\sqrt{7}i+3}{4}
Divide \frac{3-i\sqrt{7}}{2} by 2.
x=\frac{3+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i+3}{4}
The equation is now solved.
x^{2}-\frac{3}{2}x=-1
Subtract \frac{3}{2}x from both sides.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-1+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-1+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{7}{16}
Add -1 to \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=-\frac{7}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{-\frac{7}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{\sqrt{7}i}{4} x-\frac{3}{4}=-\frac{\sqrt{7}i}{4}
Simplify.
x=\frac{3+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i+3}{4}
Add \frac{3}{4} to both sides of the equation.