Skip to main content
Solve for x, y
Tick mark Image
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-mx=0
Consider the second equation. Subtract mx from both sides.
y+\left(-m\right)x=0,x^{2}+y^{2}=R^{2}
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y+\left(-m\right)x=0
Solve y+\left(-m\right)x=0 for y by isolating y on the left hand side of the equal sign.
y=mx
Subtract \left(-m\right)x from both sides of the equation.
x^{2}+\left(mx\right)^{2}=R^{2}
Substitute mx for y in the other equation, x^{2}+y^{2}=R^{2}.
x^{2}+m^{2}x^{2}=R^{2}
Square mx.
\left(m^{2}+1\right)x^{2}=R^{2}
Add x^{2} to m^{2}x^{2}.
\left(m^{2}+1\right)x^{2}-R^{2}=0
Subtract R^{2} from both sides of the equation.
x=\frac{0±\sqrt{0^{2}-4\left(m^{2}+1\right)\left(-R^{2}\right)}}{2\left(m^{2}+1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1m^{2} for a, 1\times 0\times 2m for b, and -R^{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(m^{2}+1\right)\left(-R^{2}\right)}}{2\left(m^{2}+1\right)}
Square 1\times 0\times 2m.
x=\frac{0±\sqrt{\left(-4m^{2}-4\right)\left(-R^{2}\right)}}{2\left(m^{2}+1\right)}
Multiply -4 times 1+1m^{2}.
x=\frac{0±\sqrt{4R^{2}\left(m^{2}+1\right)}}{2\left(m^{2}+1\right)}
Multiply -4-4m^{2} times -R^{2}.
x=\frac{0±2|R|\sqrt{m^{2}+1}}{2\left(m^{2}+1\right)}
Take the square root of 4\left(1+m^{2}\right)R^{2}.
x=\frac{0±2|R|\sqrt{m^{2}+1}}{2m^{2}+2}
Multiply 2 times 1+1m^{2}.
x=\frac{|R|}{\sqrt{m^{2}+1}}
Now solve the equation x=\frac{0±2|R|\sqrt{m^{2}+1}}{2m^{2}+2} when ± is plus.
x=-\frac{|R|}{\sqrt{m^{2}+1}}
Now solve the equation x=\frac{0±2|R|\sqrt{m^{2}+1}}{2m^{2}+2} when ± is minus.
y=m\times \frac{|R|}{\sqrt{m^{2}+1}}
There are two solutions for x: \frac{|R|}{\sqrt{1+m^{2}}} and -\frac{|R|}{\sqrt{1+m^{2}}}. Substitute \frac{|R|}{\sqrt{1+m^{2}}} for x in the equation y=mx to find the corresponding solution for y that satisfies both equations.
y=\frac{|R|}{\sqrt{m^{2}+1}}m
Multiply m times \frac{|R|}{\sqrt{1+m^{2}}}.
y=m\left(-\frac{|R|}{\sqrt{m^{2}+1}}\right)
Now substitute -\frac{|R|}{\sqrt{1+m^{2}}} for x in the equation y=mx and solve to find the corresponding solution for y that satisfies both equations.
y=\left(-\frac{|R|}{\sqrt{m^{2}+1}}\right)m
Multiply m times -\frac{|R|}{\sqrt{1+m^{2}}}.
y=\frac{|R|}{\sqrt{m^{2}+1}}m,x=\frac{|R|}{\sqrt{m^{2}+1}}\text{ or }y=\left(-\frac{|R|}{\sqrt{m^{2}+1}}\right)m,x=-\frac{|R|}{\sqrt{m^{2}+1}}
The system is now solved.