Solve for x, y
x=-\frac{R}{\sqrt{m^{2}+1}}\text{, }y=-\frac{Rm}{\sqrt{m^{2}+1}}
x=\frac{R}{\sqrt{m^{2}+1}}\text{, }y=\frac{Rm}{\sqrt{m^{2}+1}}
Solve for x, y (complex solution)
\left\{\begin{matrix}x=\left(m^{2}+1\right)^{-\frac{1}{2}}R\text{, }y=\left(m^{2}+1\right)^{-\frac{1}{2}}Rm\text{; }x=-\left(m^{2}+1\right)^{-\frac{1}{2}}R\text{, }y=-\left(m^{2}+1\right)^{-\frac{1}{2}}Rm\text{, }&m\neq -i\text{ and }m\neq i\\x\in \mathrm{C}\text{, }y=mx\text{, }&\left(m=i\text{ or }m=-i\right)\text{ and }R=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y-mx=0
Consider the second equation. Subtract mx from both sides.
y+\left(-m\right)x=0,x^{2}+y^{2}=R^{2}
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y+\left(-m\right)x=0
Solve y+\left(-m\right)x=0 for y by isolating y on the left hand side of the equal sign.
y=mx
Subtract \left(-m\right)x from both sides of the equation.
x^{2}+\left(mx\right)^{2}=R^{2}
Substitute mx for y in the other equation, x^{2}+y^{2}=R^{2}.
x^{2}+m^{2}x^{2}=R^{2}
Square mx.
\left(m^{2}+1\right)x^{2}=R^{2}
Add x^{2} to m^{2}x^{2}.
\left(m^{2}+1\right)x^{2}-R^{2}=0
Subtract R^{2} from both sides of the equation.
x=\frac{0±\sqrt{0^{2}-4\left(m^{2}+1\right)\left(-R^{2}\right)}}{2\left(m^{2}+1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1m^{2} for a, 1\times 0\times 2m for b, and -R^{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(m^{2}+1\right)\left(-R^{2}\right)}}{2\left(m^{2}+1\right)}
Square 1\times 0\times 2m.
x=\frac{0±\sqrt{\left(-4m^{2}-4\right)\left(-R^{2}\right)}}{2\left(m^{2}+1\right)}
Multiply -4 times 1+1m^{2}.
x=\frac{0±\sqrt{4R^{2}\left(m^{2}+1\right)}}{2\left(m^{2}+1\right)}
Multiply -4-4m^{2} times -R^{2}.
x=\frac{0±2|R|\sqrt{m^{2}+1}}{2\left(m^{2}+1\right)}
Take the square root of 4\left(1+m^{2}\right)R^{2}.
x=\frac{0±2|R|\sqrt{m^{2}+1}}{2m^{2}+2}
Multiply 2 times 1+1m^{2}.
x=\frac{|R|}{\sqrt{m^{2}+1}}
Now solve the equation x=\frac{0±2|R|\sqrt{m^{2}+1}}{2m^{2}+2} when ± is plus.
x=-\frac{|R|}{\sqrt{m^{2}+1}}
Now solve the equation x=\frac{0±2|R|\sqrt{m^{2}+1}}{2m^{2}+2} when ± is minus.
y=m\times \frac{|R|}{\sqrt{m^{2}+1}}
There are two solutions for x: \frac{|R|}{\sqrt{1+m^{2}}} and -\frac{|R|}{\sqrt{1+m^{2}}}. Substitute \frac{|R|}{\sqrt{1+m^{2}}} for x in the equation y=mx to find the corresponding solution for y that satisfies both equations.
y=\frac{|R|}{\sqrt{m^{2}+1}}m
Multiply m times \frac{|R|}{\sqrt{1+m^{2}}}.
y=m\left(-\frac{|R|}{\sqrt{m^{2}+1}}\right)
Now substitute -\frac{|R|}{\sqrt{1+m^{2}}} for x in the equation y=mx and solve to find the corresponding solution for y that satisfies both equations.
y=\left(-\frac{|R|}{\sqrt{m^{2}+1}}\right)m
Multiply m times -\frac{|R|}{\sqrt{1+m^{2}}}.
y=\frac{|R|}{\sqrt{m^{2}+1}}m,x=\frac{|R|}{\sqrt{m^{2}+1}}\text{ or }y=\left(-\frac{|R|}{\sqrt{m^{2}+1}}\right)m,x=-\frac{|R|}{\sqrt{m^{2}+1}}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}