Solve for x, y
x=-\frac{3\sqrt{626}}{626}\approx -0.119904115\text{, }y=-\frac{75\sqrt{626}}{626}\approx -2.997602876
x=\frac{3\sqrt{626}}{626}\approx 0.119904115\text{, }y=\frac{75\sqrt{626}}{626}\approx 2.997602876
Graph
Share
Copied to clipboard
y-25x=0
Consider the second equation. Subtract 25x from both sides.
y-25x=0,x^{2}+y^{2}=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-25x=0
Solve y-25x=0 for y by isolating y on the left hand side of the equal sign.
y=25x
Subtract -25x from both sides of the equation.
x^{2}+\left(25x\right)^{2}=9
Substitute 25x for y in the other equation, x^{2}+y^{2}=9.
x^{2}+625x^{2}=9
Square 25x.
626x^{2}=9
Add x^{2} to 625x^{2}.
626x^{2}-9=0
Subtract 9 from both sides of the equation.
x=\frac{0±\sqrt{0^{2}-4\times 626\left(-9\right)}}{2\times 626}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 25^{2} for a, 1\times 0\times 2\times 25 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 626\left(-9\right)}}{2\times 626}
Square 1\times 0\times 2\times 25.
x=\frac{0±\sqrt{-2504\left(-9\right)}}{2\times 626}
Multiply -4 times 1+1\times 25^{2}.
x=\frac{0±\sqrt{22536}}{2\times 626}
Multiply -2504 times -9.
x=\frac{0±6\sqrt{626}}{2\times 626}
Take the square root of 22536.
x=\frac{0±6\sqrt{626}}{1252}
Multiply 2 times 1+1\times 25^{2}.
x=\frac{3\sqrt{626}}{626}
Now solve the equation x=\frac{0±6\sqrt{626}}{1252} when ± is plus.
x=-\frac{3\sqrt{626}}{626}
Now solve the equation x=\frac{0±6\sqrt{626}}{1252} when ± is minus.
y=25\times \frac{3\sqrt{626}}{626}
There are two solutions for x: \frac{3\sqrt{626}}{626} and -\frac{3\sqrt{626}}{626}. Substitute \frac{3\sqrt{626}}{626} for x in the equation y=25x to find the corresponding solution for y that satisfies both equations.
y=25\left(-\frac{3\sqrt{626}}{626}\right)
Now substitute -\frac{3\sqrt{626}}{626} for x in the equation y=25x and solve to find the corresponding solution for y that satisfies both equations.
y=25\times \frac{3\sqrt{626}}{626},x=\frac{3\sqrt{626}}{626}\text{ or }y=25\left(-\frac{3\sqrt{626}}{626}\right),x=-\frac{3\sqrt{626}}{626}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}