Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-25x=0
Consider the second equation. Subtract 25x from both sides.
y-25x=0,x^{2}+y^{2}=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-25x=0
Solve y-25x=0 for y by isolating y on the left hand side of the equal sign.
y=25x
Subtract -25x from both sides of the equation.
x^{2}+\left(25x\right)^{2}=9
Substitute 25x for y in the other equation, x^{2}+y^{2}=9.
x^{2}+625x^{2}=9
Square 25x.
626x^{2}=9
Add x^{2} to 625x^{2}.
626x^{2}-9=0
Subtract 9 from both sides of the equation.
x=\frac{0±\sqrt{0^{2}-4\times 626\left(-9\right)}}{2\times 626}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 25^{2} for a, 1\times 0\times 2\times 25 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 626\left(-9\right)}}{2\times 626}
Square 1\times 0\times 2\times 25.
x=\frac{0±\sqrt{-2504\left(-9\right)}}{2\times 626}
Multiply -4 times 1+1\times 25^{2}.
x=\frac{0±\sqrt{22536}}{2\times 626}
Multiply -2504 times -9.
x=\frac{0±6\sqrt{626}}{2\times 626}
Take the square root of 22536.
x=\frac{0±6\sqrt{626}}{1252}
Multiply 2 times 1+1\times 25^{2}.
x=\frac{3\sqrt{626}}{626}
Now solve the equation x=\frac{0±6\sqrt{626}}{1252} when ± is plus.
x=-\frac{3\sqrt{626}}{626}
Now solve the equation x=\frac{0±6\sqrt{626}}{1252} when ± is minus.
y=25\times \frac{3\sqrt{626}}{626}
There are two solutions for x: \frac{3\sqrt{626}}{626} and -\frac{3\sqrt{626}}{626}. Substitute \frac{3\sqrt{626}}{626} for x in the equation y=25x to find the corresponding solution for y that satisfies both equations.
y=25\left(-\frac{3\sqrt{626}}{626}\right)
Now substitute -\frac{3\sqrt{626}}{626} for x in the equation y=25x and solve to find the corresponding solution for y that satisfies both equations.
y=25\times \frac{3\sqrt{626}}{626},x=\frac{3\sqrt{626}}{626}\text{ or }y=25\left(-\frac{3\sqrt{626}}{626}\right),x=-\frac{3\sqrt{626}}{626}
The system is now solved.