Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=2,y^{2}+x^{2}=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=2
Solve x+y=2 for x by isolating x on the left hand side of the equal sign.
x=-y+2
Subtract y from both sides of the equation.
y^{2}+\left(-y+2\right)^{2}=9
Substitute -y+2 for x in the other equation, y^{2}+x^{2}=9.
y^{2}+y^{2}-4y+4=9
Square -y+2.
2y^{2}-4y+4=9
Add y^{2} to y^{2}.
2y^{2}-4y-5=0
Subtract 9 from both sides of the equation.
y=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 2\left(-1\right)\times 2 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-5\right)}}{2\times 2}
Square 1\times 2\left(-1\right)\times 2.
y=\frac{-\left(-4\right)±\sqrt{16-8\left(-5\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-4\right)±\sqrt{16+40}}{2\times 2}
Multiply -8 times -5.
y=\frac{-\left(-4\right)±\sqrt{56}}{2\times 2}
Add 16 to 40.
y=\frac{-\left(-4\right)±2\sqrt{14}}{2\times 2}
Take the square root of 56.
y=\frac{4±2\sqrt{14}}{2\times 2}
The opposite of 1\times 2\left(-1\right)\times 2 is 4.
y=\frac{4±2\sqrt{14}}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{2\sqrt{14}+4}{4}
Now solve the equation y=\frac{4±2\sqrt{14}}{4} when ± is plus. Add 4 to 2\sqrt{14}.
y=\frac{\sqrt{14}}{2}+1
Divide 4+2\sqrt{14} by 4.
y=\frac{4-2\sqrt{14}}{4}
Now solve the equation y=\frac{4±2\sqrt{14}}{4} when ± is minus. Subtract 2\sqrt{14} from 4.
y=-\frac{\sqrt{14}}{2}+1
Divide 4-2\sqrt{14} by 4.
x=-\left(\frac{\sqrt{14}}{2}+1\right)+2
There are two solutions for y: 1+\frac{\sqrt{14}}{2} and 1-\frac{\sqrt{14}}{2}. Substitute 1+\frac{\sqrt{14}}{2} for y in the equation x=-y+2 to find the corresponding solution for x that satisfies both equations.
x=-\left(-\frac{\sqrt{14}}{2}+1\right)+2
Now substitute 1-\frac{\sqrt{14}}{2} for y in the equation x=-y+2 and solve to find the corresponding solution for x that satisfies both equations.
x=-\left(\frac{\sqrt{14}}{2}+1\right)+2,y=\frac{\sqrt{14}}{2}+1\text{ or }x=-\left(-\frac{\sqrt{14}}{2}+1\right)+2,y=-\frac{\sqrt{14}}{2}+1
The system is now solved.