Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y+1=0,y^{2}+x^{2}=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y+1=0
Solve x+y+1=0 for x by isolating x on the left hand side of the equal sign.
x+y=-1
Subtract 1 from both sides of the equation.
x=-y-1
Subtract y from both sides of the equation.
y^{2}+\left(-y-1\right)^{2}=9
Substitute -y-1 for x in the other equation, y^{2}+x^{2}=9.
y^{2}+y^{2}+2y+1=9
Square -y-1.
2y^{2}+2y+1=9
Add y^{2} to y^{2}.
2y^{2}+2y-8=0
Subtract 9 from both sides of the equation.
y=\frac{-2±\sqrt{2^{2}-4\times 2\left(-8\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\left(-1\right)\left(-1\right)\times 2 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-2±\sqrt{4-4\times 2\left(-8\right)}}{2\times 2}
Square 1\left(-1\right)\left(-1\right)\times 2.
y=\frac{-2±\sqrt{4-8\left(-8\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-2±\sqrt{4+64}}{2\times 2}
Multiply -8 times -8.
y=\frac{-2±\sqrt{68}}{2\times 2}
Add 4 to 64.
y=\frac{-2±2\sqrt{17}}{2\times 2}
Take the square root of 68.
y=\frac{-2±2\sqrt{17}}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{2\sqrt{17}-2}{4}
Now solve the equation y=\frac{-2±2\sqrt{17}}{4} when ± is plus. Add -2 to 2\sqrt{17}.
y=\frac{\sqrt{17}-1}{2}
Divide -2+2\sqrt{17} by 4.
y=\frac{-2\sqrt{17}-2}{4}
Now solve the equation y=\frac{-2±2\sqrt{17}}{4} when ± is minus. Subtract 2\sqrt{17} from -2.
y=\frac{-\sqrt{17}-1}{2}
Divide -2-2\sqrt{17} by 4.
x=-\frac{\sqrt{17}-1}{2}-1
There are two solutions for y: \frac{-1+\sqrt{17}}{2} and \frac{-1-\sqrt{17}}{2}. Substitute \frac{-1+\sqrt{17}}{2} for y in the equation x=-y-1 to find the corresponding solution for x that satisfies both equations.
x=-\frac{-\sqrt{17}-1}{2}-1
Now substitute \frac{-1-\sqrt{17}}{2} for y in the equation x=-y-1 and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{\sqrt{17}-1}{2}-1,y=\frac{\sqrt{17}-1}{2}\text{ or }x=-\frac{-\sqrt{17}-1}{2}-1,y=\frac{-\sqrt{17}-1}{2}
The system is now solved.