Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x-y=3,y^{2}+x^{2}=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x-y=3
Solve 2x-y=3 for x by isolating x on the left hand side of the equal sign.
2x=y+3
Subtract -y from both sides of the equation.
x=\frac{1}{2}y+\frac{3}{2}
Divide both sides by 2.
y^{2}+\left(\frac{1}{2}y+\frac{3}{2}\right)^{2}=9
Substitute \frac{1}{2}y+\frac{3}{2} for x in the other equation, y^{2}+x^{2}=9.
y^{2}+\frac{1}{4}y^{2}+\frac{3}{2}y+\frac{9}{4}=9
Square \frac{1}{2}y+\frac{3}{2}.
\frac{5}{4}y^{2}+\frac{3}{2}y+\frac{9}{4}=9
Add y^{2} to \frac{1}{4}y^{2}.
\frac{5}{4}y^{2}+\frac{3}{2}y-\frac{27}{4}=0
Subtract 9 from both sides of the equation.
y=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\times \frac{5}{4}\left(-\frac{27}{4}\right)}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times \left(\frac{1}{2}\right)^{2} for a, 1\times \frac{3}{2}\times \frac{1}{2}\times 2 for b, and -\frac{27}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\times \frac{5}{4}\left(-\frac{27}{4}\right)}}{2\times \frac{5}{4}}
Square 1\times \frac{3}{2}\times \frac{1}{2}\times 2.
y=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-5\left(-\frac{27}{4}\right)}}{2\times \frac{5}{4}}
Multiply -4 times 1+1\times \left(\frac{1}{2}\right)^{2}.
y=\frac{-\frac{3}{2}±\sqrt{\frac{9+135}{4}}}{2\times \frac{5}{4}}
Multiply -5 times -\frac{27}{4}.
y=\frac{-\frac{3}{2}±\sqrt{36}}{2\times \frac{5}{4}}
Add \frac{9}{4} to \frac{135}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\frac{3}{2}±6}{2\times \frac{5}{4}}
Take the square root of 36.
y=\frac{-\frac{3}{2}±6}{\frac{5}{2}}
Multiply 2 times 1+1\times \left(\frac{1}{2}\right)^{2}.
y=\frac{\frac{9}{2}}{\frac{5}{2}}
Now solve the equation y=\frac{-\frac{3}{2}±6}{\frac{5}{2}} when ± is plus. Add -\frac{3}{2} to 6.
y=\frac{9}{5}
Divide \frac{9}{2} by \frac{5}{2} by multiplying \frac{9}{2} by the reciprocal of \frac{5}{2}.
y=-\frac{\frac{15}{2}}{\frac{5}{2}}
Now solve the equation y=\frac{-\frac{3}{2}±6}{\frac{5}{2}} when ± is minus. Subtract 6 from -\frac{3}{2}.
y=-3
Divide -\frac{15}{2} by \frac{5}{2} by multiplying -\frac{15}{2} by the reciprocal of \frac{5}{2}.
x=\frac{1}{2}\times \frac{9}{5}+\frac{3}{2}
There are two solutions for y: \frac{9}{5} and -3. Substitute \frac{9}{5} for y in the equation x=\frac{1}{2}y+\frac{3}{2} to find the corresponding solution for x that satisfies both equations.
x=\frac{9}{10}+\frac{3}{2}
Multiply \frac{1}{2} times \frac{9}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{12}{5}
Add \frac{1}{2}\times \frac{9}{5} to \frac{3}{2}.
x=\frac{1}{2}\left(-3\right)+\frac{3}{2}
Now substitute -3 for y in the equation x=\frac{1}{2}y+\frac{3}{2} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{-3+3}{2}
Multiply \frac{1}{2} times -3.
x=0
Add -3\times \frac{1}{2} to \frac{3}{2}.
x=\frac{12}{5},y=\frac{9}{5}\text{ or }x=0,y=-3
The system is now solved.