Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=20
Solve x+y=20 for x by isolating x on the left hand side of the equal sign.
x=-y+20
Subtract y from both sides of the equation.
y^{2}+\left(-y+20\right)^{2}=7
Substitute -y+20 for x in the other equation, y^{2}+x^{2}=7.
y^{2}+y^{2}-40y+400=7
Square -y+20.
2y^{2}-40y+400=7
Add y^{2} to y^{2}.
2y^{2}-40y+393=0
Subtract 7 from both sides of the equation.
y=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 2\times 393}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 20\left(-1\right)\times 2 for b, and 393 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-40\right)±\sqrt{1600-4\times 2\times 393}}{2\times 2}
Square 1\times 20\left(-1\right)\times 2.
y=\frac{-\left(-40\right)±\sqrt{1600-8\times 393}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-40\right)±\sqrt{1600-3144}}{2\times 2}
Multiply -8 times 393.
y=\frac{-\left(-40\right)±\sqrt{-1544}}{2\times 2}
Add 1600 to -3144.
y=\frac{-\left(-40\right)±2\sqrt{386}i}{2\times 2}
Take the square root of -1544.
y=\frac{40±2\sqrt{386}i}{2\times 2}
The opposite of 1\times 20\left(-1\right)\times 2 is 40.
y=\frac{40±2\sqrt{386}i}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{40+2\sqrt{386}i}{4}
Now solve the equation y=\frac{40±2\sqrt{386}i}{4} when ± is plus. Add 40 to 2i\sqrt{386}.
y=\frac{\sqrt{386}i}{2}+10
Divide 40+2i\sqrt{386} by 4.
y=\frac{-2\sqrt{386}i+40}{4}
Now solve the equation y=\frac{40±2\sqrt{386}i}{4} when ± is minus. Subtract 2i\sqrt{386} from 40.
y=-\frac{\sqrt{386}i}{2}+10
Divide 40-2i\sqrt{386} by 4.
x=-\left(\frac{\sqrt{386}i}{2}+10\right)+20
There are two solutions for y: 10+\frac{i\sqrt{386}}{2} and 10-\frac{i\sqrt{386}}{2}. Substitute 10+\frac{i\sqrt{386}}{2} for y in the equation x=-y+20 to find the corresponding solution for x that satisfies both equations.
x=-\left(-\frac{\sqrt{386}i}{2}+10\right)+20
Now substitute 10-\frac{i\sqrt{386}}{2} for y in the equation x=-y+20 and solve to find the corresponding solution for x that satisfies both equations.
x=-\left(\frac{\sqrt{386}i}{2}+10\right)+20,y=\frac{\sqrt{386}i}{2}+10\text{ or }x=-\left(-\frac{\sqrt{386}i}{2}+10\right)+20,y=-\frac{\sqrt{386}i}{2}+10
The system is now solved.