Solve for x, y
x=\frac{\sqrt{11}+1}{2}\approx 2.158312395\text{, }y=\frac{1-\sqrt{11}}{2}\approx -1.158312395
x=\frac{1-\sqrt{11}}{2}\approx -1.158312395\text{, }y=\frac{\sqrt{11}+1}{2}\approx 2.158312395
Graph
Share
Copied to clipboard
y+x=1,x^{2}+y^{2}=6
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y+x=1
Solve y+x=1 for y by isolating y on the left hand side of the equal sign.
y=-x+1
Subtract x from both sides of the equation.
x^{2}+\left(-x+1\right)^{2}=6
Substitute -x+1 for y in the other equation, x^{2}+y^{2}=6.
x^{2}+x^{2}-2x+1=6
Square -x+1.
2x^{2}-2x+1=6
Add x^{2} to x^{2}.
2x^{2}-2x-5=0
Subtract 6 from both sides of the equation.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 1\left(-1\right)\times 2 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-5\right)}}{2\times 2}
Square 1\times 1\left(-1\right)\times 2.
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-5\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
x=\frac{-\left(-2\right)±\sqrt{4+40}}{2\times 2}
Multiply -8 times -5.
x=\frac{-\left(-2\right)±\sqrt{44}}{2\times 2}
Add 4 to 40.
x=\frac{-\left(-2\right)±2\sqrt{11}}{2\times 2}
Take the square root of 44.
x=\frac{2±2\sqrt{11}}{2\times 2}
The opposite of 1\times 1\left(-1\right)\times 2 is 2.
x=\frac{2±2\sqrt{11}}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
x=\frac{2\sqrt{11}+2}{4}
Now solve the equation x=\frac{2±2\sqrt{11}}{4} when ± is plus. Add 2 to 2\sqrt{11}.
x=\frac{\sqrt{11}+1}{2}
Divide 2+2\sqrt{11} by 4.
x=\frac{2-2\sqrt{11}}{4}
Now solve the equation x=\frac{2±2\sqrt{11}}{4} when ± is minus. Subtract 2\sqrt{11} from 2.
x=\frac{1-\sqrt{11}}{2}
Divide 2-2\sqrt{11} by 4.
y=-\frac{\sqrt{11}+1}{2}+1
There are two solutions for x: \frac{1+\sqrt{11}}{2} and \frac{1-\sqrt{11}}{2}. Substitute \frac{1+\sqrt{11}}{2} for x in the equation y=-x+1 to find the corresponding solution for y that satisfies both equations.
y=-\frac{1-\sqrt{11}}{2}+1
Now substitute \frac{1-\sqrt{11}}{2} for x in the equation y=-x+1 and solve to find the corresponding solution for y that satisfies both equations.
y=-\frac{\sqrt{11}+1}{2}+1,x=\frac{\sqrt{11}+1}{2}\text{ or }y=-\frac{1-\sqrt{11}}{2}+1,x=\frac{1-\sqrt{11}}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}