Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-y=3,y^{2}+x^{2}=6
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=3
Solve x-y=3 for x by isolating x on the left hand side of the equal sign.
x=y+3
Subtract -y from both sides of the equation.
y^{2}+\left(y+3\right)^{2}=6
Substitute y+3 for x in the other equation, y^{2}+x^{2}=6.
y^{2}+y^{2}+6y+9=6
Square y+3.
2y^{2}+6y+9=6
Add y^{2} to y^{2}.
2y^{2}+6y+3=0
Subtract 6 from both sides of the equation.
y=\frac{-6±\sqrt{6^{2}-4\times 2\times 3}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 3\times 1\times 2 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-6±\sqrt{36-4\times 2\times 3}}{2\times 2}
Square 1\times 3\times 1\times 2.
y=\frac{-6±\sqrt{36-8\times 3}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
y=\frac{-6±\sqrt{36-24}}{2\times 2}
Multiply -8 times 3.
y=\frac{-6±\sqrt{12}}{2\times 2}
Add 36 to -24.
y=\frac{-6±2\sqrt{3}}{2\times 2}
Take the square root of 12.
y=\frac{-6±2\sqrt{3}}{4}
Multiply 2 times 1+1\times 1^{2}.
y=\frac{2\sqrt{3}-6}{4}
Now solve the equation y=\frac{-6±2\sqrt{3}}{4} when ± is plus. Add -6 to 2\sqrt{3}.
y=\frac{\sqrt{3}-3}{2}
Divide -6+2\sqrt{3} by 4.
y=\frac{-2\sqrt{3}-6}{4}
Now solve the equation y=\frac{-6±2\sqrt{3}}{4} when ± is minus. Subtract 2\sqrt{3} from -6.
y=\frac{-\sqrt{3}-3}{2}
Divide -6-2\sqrt{3} by 4.
x=\frac{\sqrt{3}-3}{2}+3
There are two solutions for y: \frac{-3+\sqrt{3}}{2} and \frac{-3-\sqrt{3}}{2}. Substitute \frac{-3+\sqrt{3}}{2} for y in the equation x=y+3 to find the corresponding solution for x that satisfies both equations.
x=\frac{-\sqrt{3}-3}{2}+3
Now substitute \frac{-3-\sqrt{3}}{2} for y in the equation x=y+3 and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{\sqrt{3}-3}{2}+3,y=\frac{\sqrt{3}-3}{2}\text{ or }x=\frac{-\sqrt{3}-3}{2}+3,y=\frac{-\sqrt{3}-3}{2}
The system is now solved.