Solve for x, y (complex solution)
x=\sqrt{2}\sqrt[4]{19}e^{\frac{-\arctan(\frac{\sqrt{3}}{4})i+2\pi i}{2}}\approx -2.891176049+0.59908175i\text{, }y=\sqrt{19}e^{-\arctan(\frac{\sqrt{3}}{4})i+\pi i}+5\approx 1+1.732050808i
x=\sqrt{2}\sqrt[4]{19}e^{-\frac{\arctan(\frac{\sqrt{3}}{4})i}{2}}\approx 2.891176049-0.59908175i\text{, }y=\sqrt{19}e^{-\arctan(\frac{\sqrt{3}}{4})i+\pi i}+5\approx 1+1.732050808i
x=\sqrt{2}\sqrt[4]{19}e^{\frac{\arctan(\frac{\sqrt{3}}{4})i}{2}}\approx 2.891176049+0.59908175i\text{, }y=\sqrt{19}e^{\left(\arctan(\frac{\sqrt{3}}{4})+\pi \right)i}+5\approx 1-1.732050808i
x=\sqrt{2}\sqrt[4]{19}e^{\frac{\arctan(\frac{\sqrt{3}}{4})i+2\pi i}{2}}\approx -2.891176049-0.59908175i\text{, }y=\sqrt{19}e^{\left(\arctan(\frac{\sqrt{3}}{4})+\pi \right)i}+5\approx 1-1.732050808i
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}